

“This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 814962”

 PROJECT DELIVERABLE REPORT

D7.6 Test cases and overall system testing results (v2)

A holistic passenger ship evacuation and rescue ecosystem

MG-2-2-2018

Marine Accident Response

Ref. Ares(2023)634261 - 27/01/2023

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

2

Document Information

Grant Agreement

Number
814962 Acronym PALAEMON

Full Title A holistic passenger ship evacuation and rescue ecosystem

Topic MG-2-2-2018: Marine Accident Response

Funding scheme RIA - Research and Innovation action

Start Date 1stJUNE 2019 Duration 36 months

Project URL www.palaemonproject.eu

EU Project Officer Georgios CHARALAMPOUS

Project Coordinator AIRBUS DEFENCE AND SPACE SAS

Deliverable D7.6 Test cases and overall system testing results (v2)

Work Package
WP7 – PALAEMON Integrated System and Technology

Validation Trials

Date of Delivery Contractual M36 Actual M43

Nature R – Report Dissemination Level PU - Public

Lead Beneficiary Atos Spain S.A.

Responsible Author David Gómez
Email david.gomez@atos.net

Phone N/A

Reviewer(s): Vassilis Chatzigiannakis (IMTL), Kyriakos Giannakis (KT)

Keywords Communications Platform, Testing, Results, Integration

http://www.palaemonproject.eu/

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

3

Authors List

Name Organization

David Gómez, Julia Ruiz ATOS

Dimitrios Kaklis, Artemis Flori DANAOS

Kyriakos Giannakis KT

Jens Hübel JU

Nikos Triantafyllou UAEG

Bogdan Gornea, Marius Curca SIMAVI

Javier Peña, Manuel Ramiro ADV

Alfredo Gardel UAH

Anastasia Danopoulou, Alexandros Koimtzoglou NTUA

Elias Chatzidouros, Antonis Chronakis ESI

Francesco Piantini THALIT

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

4

Revision History

Disclaimer: Any dissemination of results reflects only the author's view and the European

Commission is not responsible for any use that may be made of the information it contains.

© PALAEMON Consortium, 2022

This deliverable contains original unpublished work except where clearly indicated otherwise.

Acknowledgement of previously published material and of the work of others has been made

through appropriate citation, quotation or both. Reproduction is authorised provided the source

is acknowledged.

Version Date Responsible Description/Remarks/Reason for

changes

0.1 2021/01/04 ATOS ToC first draft and initial list of contributors

0.2 2022/09/05 ALL First round of inputs from partners

0.3 2022/09/15 ATOS Section 2 (Software development)

0.4 2022/09/30 ATOS Section 2 (Docker and Kubernetes)

0.5 2022/11/13 ATOS Section 3 (Evacuation Process)

0.6 2022/06/15 ATOS Section 4 (Cross-validation)

0.7 2022/06/23 ATOS Section 5 (Individual testing)

0.8 2022/11/20 ATOS Updated figures from testing campaign

(hands-on sessions)

0.85 2022/12/12 ATOS Intro + conclusions

0.9 2022/12/21 ITML, KT Internal review

0.95 2022/12/2 ATOS Update with internal reviewers’ feedback

1.0 2022/12/23 ATOS Review and Release (submitted to EC

portal)

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

5

Contents

1 Introduction .. 9

2 Software development and integration methodology .. 10

2.1 Docker & Kubernetes .. 11

2.2 GitLab Issues and Branches Management ... 15

2.3 GitLab Continuous Integration / Continuous Deployment (CI/CD) 17

3 Evacuation Process Management .. 19

4 Overall system testing results .. 22

4.1 DFB (Apache Kafka & Elasticsearch) as system validator..................................... 22

4.2 PALAEMON Evacuation Coordinator as system validator 23

4.3 Kibana (Canvas) as system validator .. 24

4.4 PIMM as system validator ... 28

4.5 Grafana as system validator ... 31

4.6 Voyage Report Generator as system validator .. 32

5 Individual validation .. 37

5.1 Smart Bracelets .. 37

5.2 Smart Cameras ... 40

5.3 Smart Safety System .. 41

5.4 VDES transceiver and gateway ... 43

5.5 Safety Management System ... 44

5.6 Ship Health Monitoring .. 46

5.7 Ship Stability Toolkit .. 46

5.8 Weather Service ... 47

5.9 Smart Risk Assessment Platform .. 50

6 Conclusions ... 52

7 References .. 53

Annex I CI/CD Sample ... 55

Annex II Evacuation Coordinator message exchange with dependent components 58

Annex III List of Kafka Topics ... 61

Annex IV PIMM API Assessment .. 64

Annex V VDR PDF Report Sample (draft) ... 67

Annex VI Smart Bracelets Evacuation Support Messages .. 70

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

6

List of Figures

Figure 1. PALAEMON-1 Kubernetes cluster – “dfb” namespace (list of active pods) 12

Figure 2. PALAEMON-01 Kubernetes cluster – “brokers” namespace (list of active pods) .. 13

Figure 3. Platform deployment repository - Docker Compose tree 13

Figure 4. PALAEMON-02 Kubernetes cluster – All namespaces (list of active pods) 15

Figure 5. Source Code Issues sample (project: Platform Deployment) 16

Figure 6. Source code branching management sample (project: Platform Deployment) 16

Figure 7. CI/CD pipeline sample overview (Project: Voyage Report Generator) 17

Figure 8. CI/CD pipeline sample stages details (Project: Voyage Report Generator) 18

Figure 9. Evacuation Coordinator protocol: resource discovery and heartbeat 19

Figure 10. Evacuation Coordinator protocol: evacuation status change management 21

Figure 11. Evacuation Coordinator Monitor layout (Normal Status) 23

Figure 12. Evacuation Coordinator Monitor layout (Boarding to MEV Status) 24

Figure 13. Kibana Canvas SQL query example... 25

Figure 14. PALAEMON Canvas – Front page ... 25

Figure 15. PALAEMON Canvas - Conning Panel (emulation) ... 26

Figure 16. PALAEMON Canvas - Passenger list ... 26

Figure 17. PALAEMON Canvas - Passenger monitoring ... 27

Figure 18. PALAEMON Canvas - VDES outgoing signals ... 28

Figure 19. PIMM General View (Decision Support Center) ... 29

Figure 20. PIMM general view (SRAP Danger in ship) .. 30

Figure 21. PIMM general view (Evacuation Status) ... 30

Figure 22. PIMM Postman collection - list of services.. 31

Figure 23. Grafana Kafka Monitoring Sample ... 31

Figure 24. PALAEMON Voyage Report Generator sequence diagram 32

Figure 25. MinIO (part of DFB) repository in the cloud - PALAEMON buckets 34

Figure 26. MinIO "palaemon-reports" bucket zoom ... 35

Figure 27. Voyage report zip file password request ... 35

Figure 28. Voyage Data Report content .. 36

Figure 29. Voyage Data Report smart-cameras folder content .. 36

Figure 30. NiFi MQTT to Kafka flow sample (screenshot) ... 37

Figure 31. Smart Bracelets MQTT communication sample (/heartbeat-request)........... 38

Figure 32. Smart Bracelets MQTT message sample ... 39

Figure 33. Smart Cameras main dashboard layout (PIMM’s Video Streaming Center) 41

Figure 34. Smart Safety System Main layout .. 42

Figure 35. VDES Transceiver Prototypes (ship & shore) ... 43

Figure 36. Safety Management System - Report updated to cloud repo (console proof) 45

Figure 37. Safety Management System - ISM Dashboard visualization of report generated by

the VRG .. 45

Figure 38. Weather service REST API request and response example 48

Figure 39. Weather Service Map user interface sample .. 49

Figure 40. Voyage Report Example - Ship & Voyage Particulars .. 67

Figure 41. Voyage Report Example - Passenger list ... 68

Figure 42. Voyage Report Example - Ship Evacuation Status Timeline 68

Figure 43. Voyage Report Example - Ship position & trajectory .. 68

Figure 44. Voyage Report Example - Smart Cameras alarms timeline 69

Figure 45. Voyage Report Example - Smart Bracelets alarms (i.e., fall detection) timeline .. 69

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

7

Figure 46. Voyage Report Example - Ship Health Monitoring alarms timeline 69

Figure 47. Smart Bracelets Evacuation Support Messages ... 70

List of Code Snippets

Code snippet 1. PIMM docker-compose file example .. 14

Code snippet 2.Kafka logging sample ... 22

Code snippet 3. Voyage report generator message exchange .. 34

Code snippet 4. Smart Bracelets Kafka sample (/heartbeat-response) 38

Code snippet 5. Smart Bracelets Kafka sample (/smart-bracelet-sensor-data) 39

Code snippet 6. Smart Cameras Kafka sample (/smart-camera) 40

Code snippet 7. Smart Cameras Kafka sample (/smart-camera-alarm) 40

Code snippet 8. Smart Safety System Kafka sample (/smart-safety-system) 42

Code snippet 9. VDES Gateway Kafka sample (/ais-position) 43

Code snippet 10. VDES Gateway Kafka sample (/weather-service) 44

Code snippet 11.VDES Gateway Kafka sample (/mayday-message).................................. 44

Code snippet 12. Ship Health Monitoring Kafka sample (/shm-report) 46

Code snippet 13. Ship Health Monitoring Kafka sample (/shm-notification).................. 46

Code snippet 14. Ship Stability Toolkit Kafka sample (/stability-toolkit).................... 47

Code snippet 15. Weather-service Kafka message sample (/weather-service) 49

Code snippet 16. Smart Risk Assessment Platform Kafka message sample (/srap –

Situation assessment) ... 50

Code snippet 17. Smart Risk Assessment Platform Kafka message sample (/srap –

Mustering) ... 51

Code snippet 18. Smart Risk Assessment Platform Kafka message sample (/srap –

Preabandonment) ... 51

Code snippet 19. Platform Deployment repository .gitlab-ci.yml file (CI/CD example) 55

Code snippet 20. Evacuation Coordinator - /resource-discovery-request and /resource-

discovery-response (sample) .. 58

Code snippet 21. Evacuation Coordinator - /heartbeat-request and /heartbeat-response

(sample) .. 59

Code snippet 22. Evacuation Coordinator - /evacuation-coordinator and /evacuation-

component-status (sample) ... 60

List of Tables

Table 1. Kafka Topics compilation table .. 61

Table 2. PIMM Get Token Request ... 64

Table 3. PIMM Get Evacuation status ... 64

Table 4. PIMM Get Voyage Status .. 64

Table 5. PIMM Get Fire Sensor data ... 64

Table 6. PIMM Get Weather Forecast Toolkit ... 65

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

8

Abbreviations

AIS Automatic Identification System

CI/CD Continuous Integration / Continuous Deployment

CSV Comma Separated Values

DPA Designated Person Ashore

DSS Decision Support System

ETL Extract, Transform and Load

GMDSS Global Maritime Distress and Safety System

HTTP HyperText Transfer Protocol

ICT Information and Communication Technologies

ISM International Safety Management

NOAA National Oceanic and Atmospheric Administration

PaMEAS PALAEMON Mustering and Evacuation Process Automation System

PIMM PALAEMON Incident Management Module

RAO Response Amplitude Operator

RPC Remote Procedure Call

SDN Software Defined Radio

SQL Structured Query Language

SRAP Smart Risk Assessment Platform

SSL Secure Sockets Layer

URL Uniform Resource Location

VCS Version Control System

VDES VHF (Very High Frequency) Data Exchange System

VRG Voyage Report Generator

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

9

1 Introduction

The definition, implementation and testing of the PALAEMON Information and Communication

Technologies (ICT) platform has been a tough work that have lasted more than 3 years, with

more than 200 conference meetings held in between. This deliverable aims to close WP7’s

activities, reporting all kind of evidence that comes to demonstrate that the PALAEMON

Communications Platform is completely functional. After this, we could consider that the

system is ready to be delivered to WP8 (PALAEMON Application Field Trials, Evaluation and

Outcomes), where we will deploy and test the infrastructure under real conditions. Namely,

the final assessment will take place in ANEK’s Elyros Ro-Pax Ferry [1].

During the initial phase of the project, alongside the definition of the internal components

(sensors, user interfaces, databases, communication protocols, high-level services, etc.), we

nailed down the approach to be followed on the software development and further integration

process. In a nutshell, we harness the possibilities behind open-sources collaborative

platforms, including tools to report potential issues and automatically re-deploy all components

without any user intervention. This is facilitated by the use of containers as standalone

executable packages that permit handling each component independently. Through this so-

called micro-service-oriented philosophy, we carry out a hybrid deployment system of

containers based on a combination of Kubernetes and Docker Compose.

We also have to take into account the behaviour of all software components according to the

current phases during an incident. For that purpose, we refresh the tailored communications

protocol held between the PALAEMON Evacuation Coordinator, a core element that

centralizes and keeps track of the status of not only the incident level, but also all software

components.

Running on a development ecosystem, based on two virtual machines running on a cloud-

based server, we have emulated two independent instances, i.e., ship and shore, trying to

mimic the real infrastructure the PALAEMON system was conceived for. This report

summarizes the main results we have gathered after carrying out a thorough validation

campaign. On the one hand, we present the most remarkable outcomes offered by services

or tools that show a holistic interaction among the different components, either in terms of

message exchanges (e.g., based on Apache Kafka) or using a graphical user interface, thus

giving a more immediate and intuitive feedback. As a second part of the validation process,

we also include individual checks, showing the information generated by most of the main

components of the system.

We have structured this document as follows: Section 2 refreshes the proposed the software

development and integration methodologies compared to those undertaken during the project

implementation stage. Section 3 illustrates how the PALAEMON platform handles the

evacuation process, where the PALAEMON Evacuation Coordinator centralizes the and

keeps track of all the process. Section 4 displays the main outputs from the various test

benches we have used to assess that components behave as expected. Section 5 presents

individual proofs of operation that come to complement the results of the previous section.

Section 6 concludes the document and closes all the activities carried out in WP7. Finally, we

must remark the presence of up to six (6) annexes that complement the validation process

described in the core sections of the deliverable.

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

10

2 Software development and integration methodology

Deliverable D7.4 (Software Development and Integration Methodology) [2] settled down the

philosophy all partners inside the consortium shall follow to develop their own software

resources. In a nutshell, these were the main principles we agreed at that time:

• Requirement-based design. In Deliverable D2.6 (PALAEMON Architecture v1) [3] we

built a complete list of user-based (i.e., stakeholders’) requirements. This compilation

gave rise to the first and second versions of the PALAEMON Architecture.

• Micro-service-oriented architecture. Splitting the classical monolith into a number of

independent software modules means that each partner could choose their

programming framework (e.g., Python, C, Java, etc.). At the end, we only have to focus

on the way these modules communicate with each other and how they save the

information (e.g., databases, etc.), leaving all the rest to developers’ choice.

• Hybrid Kubernetes/Docker deployment. This is a direct consequence of the use of

micro-services instead of a monolithic solution. The deployment of the components

become extremely simple and seamless. Moreover, the utilization of Kubernetes [4]

over Docker [5] containers permits the orchestration of the most critical or complex

components (e.g., databases, streaming brokers, etc.)

• Inter-component communication. One of the critical decisions we took is that,

instead of specifying individual HTTP (HypeText Transfer Protocol) or RPC (Remote

Procedure Call) interfaces for each component, we rely on1 the main communications

platform, Apache Kafka [6], the most widespread distributed event streaming platform.

• Open-source nature. One of the main perks of this type of collaborative projects is

that partners can learn from each other. This opens the door to sharing the

breakthrough achieved on the software development phase. In the context of

PALAEMON, we have opted for GitLab [7] as the Version Control System (VCS) and

Sonatype Nexus Manager [8] to manage all the binaries and artifacts created, i.e.,

Docker images, Python PIP packages, etc.

• Continuous Integration / Continuous Deployment (CI/CD). Automating tasks

permit developers to save tens of hours during the development process. Now, at the

same time they save a (differential) copy of their source code, there are frameworks

that seamlessly build all the infrastructure and redeploy the new and updated

components.

• Testing. The main goal of this deliverable is to demonstrate that the PALAEMON

Communication Platform is completely operative and, thus, WP8 receives a functional

framework. We report throughout the document the main checks we have carried out

to demonstrate that everything is in place to handle a real evacuation scenario.

• Documentation. There is no good development unless a good (or event better)

documentation supports the source code. When it comes to replicate the conditions

(e.g., initialization, configuration, expected operation, etc.), it is deemed necessary to

have dedicated a fair amount on time writing down all this information.

To complement the reading of the software development and integration methodology, the

reader shall refer to D2.6 (PALAEMON Architecture v1) [3] and D2.7 (PALAEMON

Architecture v2) [9]. In these deliverables, a complete picture of the PALAEMON Reference

Architecture is given.

1 We can find some RESTful interfaces, but these are for secondary purposes.

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

11

2.1 Docker & Kubernetes

As described in D7.5 (System Integration & Final PALAEMON Prototype v2) [10], the ICT

infrastructure of the PALAEMON Communications platform (final release) is split into 6 parts:

1. PALAEMON Field Devices: this category corresponds to external hardware (e.g.,

sensors, cameras, transceivers…) that bring information to the central system.

2. User equipment: similar to the previous case, but in this case a person

(passenger/crew) uses/wears the device (Augmented Reality glasses, smart bracelets

and smartphones).

3. PALAEMON-01 (Elyros’ emulated infrastructure). This is the cornerstone of the

PALAEMON platform. Thought to run on a ship’s premises (i.e., servers), key services

run here. Communication (Kafka) brokers, databases and high-level services are

executed in what we could assume as the system’s mainframe.

4. PALAEMON-02 (Shore emulated infrastructure). A lightweight version of the

PALAEMON ship (main) system is replicated in an alike ashore environment, where

different stakeholders (e.g., Port Authorities, Designated Person Ashore – DPA, etc.)

can take part of the story.

5. Internet/cloud services: Some core components need to rely on external services to

operate correctly. Hence, an Internet connection is required to have access to these.

6. PALAEMON Academy: Independent infrastructure that attends to passengers and

training programme. Nothing to do with the actual evacuation process.

Concerning the deployment mode, we only have to pay attention here to PALAEMON-01 and

PALAEMON-02 components, as the other groups do not use containers or orchestrators, as

they natively run their software instead.

Despite the initial idea of running all containers on the same Kubernetes cluster, we opted for

a split between using Kubernetes and Docker (via Docker Compose [11]). The rationale

behind that is twofold: 1- The use of the orchestrator presents a steep learning curve to non-

skilled partners. 2- Most of the smart services will not present high computational demands

that may lead to have a stricter control, for example in the form of a high demand peak or an

exclusive database. For that reason, only the critical services are on Kubernetes, as they do

require a thorough management, for the sake of scalability, observability, persistence of the

information, etc. Moreover, we have to say that the deployment phase is automatically carried

out by GitLab’s CI/CD framework, as we will detain Section 2.3.

As a matter of fact, we have used an external tool call Kubernetes Lens [12] (built on open-

source and free for personal use) to visualize the content of the clusters. As it goes beyond

the testing campaign to present all the elements that are orchestrated by Kubernetes, we only

display the active pods2 that are up-and-running in the cluster. For PALAEMON-01, we have

created a single-node cluster. The load of the whole system does not demand much

computational cost and a single virtual machine is able to withstand everything. Within the

same cluster, we have configured a handful of so-called namespaces, which can be seen as

logically separated domains, almost virtual sub-clusters. Some of them are devoted to internal

cluster management and will be left aside this analysis. For our purposes, there are two main

namespaces: “dfb” and “brokers”.

2 According to Kubernetes’ official documentation [41], a pod “is the smallest deployable units of
computing than can be created and/or managed in Kubernetes).

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

12

Figure 1 shows all the deployments is inside “dfb” namespace. We can observe the presence

of a handful of background elements that are out of the scope of this analysis. Their mission

is to offer management actions or observability features to the system orchestrator (i.e.,

Kubernetes). Below we summarize the components that have been deployed in the context of

the PALAEMON platform:

• grafana-deployment – Component that help monitor Kafka’s flows and behaviour (we

will cover this in Section 4.5)

• es-connector-deployment – Kafka to Elasticsearch connector

• es-proxy-deployment – DFB Endpoint API that serves the information from the

database (i.e., Elasticsearch)

• kapow – Kapow! [13] is a service that turns a shell development into an HTTP API. It

will work as part of the Voyage Report Generator component

• kibana-deployment – Data Visualization layer that works on top of Elasticsearch

(Section 0 is based on this framework).

• evac-coord – PALAEMON Evacuation Coordinator

• kafka-1 deployment – Kafka Broker

• mosquitto – MQTT Broker that allows the communication with some devices (i.e.,

smart bracelets and VDES – VHF Data Exchange System – transceivers).

• nginx-deployment – Reverse Proxy that maps between internal IP addresses and final

URLs (Uniform Resource Location).

• nifi – Apache NiFi [14] is a frameworks that takes the (raw) data, transforms it on-the-

fly and streams to the next level (e.g., database, services, etc.)

• nigi-registry – NiFi’s Companion component[15],

• vdr – Voyage Report Generator component.

• zookeeper-deployment – Apache Zookeeper [16] is a Kafka companion component,

responsible for its configuration and internal management

Figure 1. PALAEMON-1 Kubernetes cluster – “dfb” namespace (list of active pods)

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

13

The second namespace, “brokers”, as shown in Figure 2, only manages the two

communication brokers: Apache Kafka and Orion-LD Context Broker, with a single pod per

deployment.

Figure 2. PALAEMON-01 Kubernetes cluster – “brokers” namespace (list of active pods)

Aside the picture, we must mention Keycloak [17], the main Identity Manager that handles the

authentication and authorization of external accesses to the main components).

Still on PALAEMON-01, as we mentioned at the beginning of the section, there are other

software modules that are deployed via Docker Compose. To illustrate this, Figure 3 shows

the (tree-like) structure of all the files3 defined in the Platform Deployment repository on GitLab

(private repository only for consortium members). In the “docker-compose” folder we manage

each of the components independently, each one with its respective environment variables

file(s)4, aside their docker-compose-*.yml file, of course. In addition, we differentiate between

those elements that are to be deployment on the ship infrastructure (PALAEMON-01) and that

of shore (PALAEMON-02).

Figure 3. Platform deployment repository - Docker Compose tree

3 The screenshot was taken from the popular Visual Studio Code Source code editor, from Microsoft
4 In order not to upload to the source code repository sensitive environment variables, we include an
“.env.template” that is pushed to GitLab; on the other hand, “.env” files are only kept locally.

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

14

Namely, we use Docker Compose to deploy the following components on PALAEMON’s

mainframe:

• Ship Stability Toolkit [18] – ship motion forecasting service

• VDES Gateway [19] – middleware between VDES transceiver (onboard) and the

PALAEMON system. As a matter of fact, there is a twin component deployed ashore

(PALAEMON-02).

• Smart Risk Assessment Platform (SRAP) [20] – smart evacuation component,

quantifying the risk during mustering and abandonment phases.

• PALAEMON Incident Management Module (PIMM) [21]– visual information hub during

the evacuation.

To illustrate in a nutshell how a docker-compose-*.yml, Code snippet 19 shows the main

components deployed alongside the PIMM. In this particular example, we can see a handful

of companion elements (e.g., Django to provide a backend server, NGINX as an internal

reverse proxy), the images taken as reference, the volumes used and the environment

variables. It is important to see that PIMM spans the deployment of Decision Support System

(DSS) and Weather Forecast Toolkit (WFT).

version: '3'
services:
 django:
 container_name: pimm-back
 build:
 context: .
 dockerfile: ./docker/pimm/Dockerfile
 command: /usr/src/app/start_pimm_back.sh
 volumes:
 - static_volume:/usr/src/app/static/
 - ../certs-kt/:/usr/src/app/certs/
 environment:
 DJANGO_SETTINGS_MODULE: PIMM-Back.settings.production
 EVAC_COORD_ADDRESS: ${PALAEMON-01_EVAC_COORDINATOR_IP}
 nginx:
 build:
 context: .
 dockerfile: ./docker/nginx/Dockerfile
 ports:
 - 127.0.0.1:8000:80
 volumes:
 - static_volume:/home/app/web/static/
 restart: always
 front:
 image: pimm-front
 ports:
 - 127.0.0.1:8080:80
 restart: always
 depends_on:
 - nginx
 wft:
 image: wft
 environment:
 PIMM_ADDRESS: http://django:8000
 volumes:
 - ../certs-kt/:/usr/src/app/certs/

volumes:
 static_volume:

Code snippet 1. PIMM docker-compose file example

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

15

There is a special case that was not deployed on Kubernetes or Docker (Compose). It is the

case of DANAOS’ Safety Management System, a proprietary software only available for

Windows systems (the reader shall know that PALAEMON-01 and PALAEMON-02 are virtual

machines based on Ubuntu OS).

On the other hand, PALAEMON-02 is a lightweight version of the main PALAEMON platform

and only needs a small subset of all the available software elements. From all the list of

components that appear in Figure 4, we can only refer to two as part of the system: MinIO [22]

an open-source object storage to keep all Voyage Reports and Traefik [23], an application

proxy that embraces authentication and networking (i.e., reverse proxy) tasks.

Figure 4. PALAEMON-02 Kubernetes cluster – All namespaces (list of active pods)

At the time of closing this report, all PaMEAS (PALAEMON Mustering and Evacuation

Process Automation System) is running in an independent and standalone

environment. It is expected that it will be installed in the main infrastructure (i.e.,

Elyros) for the real scenario evaluation, that is, WP8’s activities.

2.2 GitLab Issues and Branches Management

Version Control Systems (VCSs) have deservedly become of the main game changers on

software development in the last decade. Their presence is so incontestable that one cannot

imagine a professional environmental without using this kind of platforms. Their success has

been so humongous that, aside keeping track of the source code, documentation, licenses,

etc., the main VCSs’ providers (e.g., GitHub, GitLab) have incorporated a number of extra

features that come to enrich the experience. Amongst all of them, we mainly take advantage

of two: issues management and CI/CD.

On issue tracking and management, we cannot rely only on a collaborative environment share

ideas, but also a way to assign changes, new features and other development tasks among

the main developers. For that purpose, we have defined a series of labels, based on three

main categories.

• Priority: Critical, High, Medium, Low, Optional

• Status: Doing, To Do, Accepted, Blocked, On Hold, Review Needed, Abandoned

• Type: Bug, Documentation, Enhancement, Maintenance, New feature.

With all this, any modification in the repositories must be identified as an issue, which should

have a responsible. Optionally, we can include deadlines, time tracking, etc. Figure 5 shows

an example of the issue tracking (board layout) on the Platform Deployment project taken in

the middle of the development phase.

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

16

Figure 5. Source Code Issues sample (project: Platform Deployment)

For us, repository branching is extremely linked to the issue management described above.

In fact, every issue should have its dedicated branch, thus the development should be

parallelized and would not affect others’ contributions. When an issue in particular is solved,

its responsible generates a “Merge Request” and the corresponding reviewer, if the new

content is valid, accepts the request and merges the code with the “master” branch (the main

one, also known as “production”). As an illustrative example of how this branching works,

Figure 6 shows how a handful of parallel works could be done simultaneously, converging

always as part of the master branch at the end of the process.

Figure 6. Source code branching management sample (project: Platform Deployment)

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

17

2.3 GitLab Continuous Integration / Continuous Deployment (CI/CD)

Current trends in software development target to maximize, to the extent possible, the number

of automatized tasks during the process. In PALAEMON we believe in this philosophy, and

we have followed its principles by harnessing the built-in CI/CD engine provided by GitLab.

Explained in layman’s terms, every time a new version of the code is pushed onto GitLab’s

remote repository, a CI/CD pipeline is activated. Users can configure how these actions are

triggered (for instance, we only “unleash” the process when the changes are made in the

“master” branch, and only in the modules that have undergone modifications, keeping intact

those ones that have not been touched). Figure 7 presents a screenshot of GitLab

summarizing the status of the last 6 CI/CD actions of the Voyage Report Generator at a

particular time during the development process.

Figure 7. CI/CD pipeline sample overview (Project: Voyage Report Generator)

The figure above gives us relevant information about the pipeline execution, summarized in

the following elements:

• Status: Either “Passed” or “Error”, the time elapsed to execute the pipeline and when

it happened.

• Pipeline: Action that trigger the execution of the pipeline. Namely, the Git “push” event,

including the commit message and the affected branch (“master” and “13-update-topic-

names-pulled-from-es”).

• Triggerer: Developer who initiated the pipeline.

• Stages: The CI/CD pipeline can be split into a handful of independent stages. To

illustrate this with a more detailed example, Figure 8 “zooms” into one of these

pipelines (i.e., the most recent) and shows the different jobs (corresponding with the

stages) carried out.

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

18

Figure 8. CI/CD pipeline sample stages details (Project: Voyage Report Generator)

There are countless configurations to address when implementing a CI/CD pipeline. In the

scope of PALAEMON, we did not specify any mandatory stages or best practices when it

comes to specifying it. Technically speaking, GitLab automatically takes the content of a file

named .gitlab-ci.yml and runs it every time a new version of the code is pushed onto GitLab.

In this particular example, we identify four stages:

1. Build: Automatic creation of Docker images corresponding to the component. In this

stage we also upload the image to Nexus, the project’s artifact repository.

2. Build master: Alike the previous one but only activated when the changes come from

the “master branch”.

3. Image clean: Removal of temporary images that will not be used anymore

4. Deploy: Download the image(s) and automatic deployment on destination (e.g.,

PALAEMON-01 VM).

As a matter of fact, the full CI/CD file (.gitlab-ci.yml) can be found in Annex I. In this example,

the component is split in two Docker images, one for the native Python software and another

one for the complementary solution based on Kapow! [13]. Moreover, we can also identify

some of the development best practices we have followed in the project:

• Rely on environment variables to yield a dynamic an automatic CI/CD ecosystem.

• Do not include any sensitive information (URLs, passwords, certificates, etc.).

• Granularity: micro-services and stages are clearly identified and separated.

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

19

3 Evacuation Process Management

This section analyses what happens, from a platform or ICT perspective, during an evacuation.

The cornerstone of the whole process is the PALAEMON Evacuation Coordinator, central

communications element that keeps track of the status of the process, not only the evacuation

per se, but the way the different software elements react and adapt their behaviour, according

to the current phase during an evacuation. It is worth highlighting that the Master of the ship

is the only person who has the rights to modify the status during an evacuation. To do so,

he/she will interact with the system by using the PIMM’s interface (see Section 4.4).

As illustrated in Figure 9, when the voyage starts, the PALAEMON Platform is initiated. The

first step corresponds to the so-called “Resource Discovery” process. We assume that the

DFB database (i.e., Elasticsearch) only contains non-voyage specific information, such as ship

particulars, blueprints, passengers and crew lists5, etc. at this point. Technically speaking, the

Master “starts” the system by clicking the “Start Voyage” button on the PIMM6. Internally, the

PIMM sends a notification (i.e., REST interface) to the Evacuation Coordinator, which proceed

to generate a /resource-discovery-request that broadcasts to all the listeners (via Kafka).

Figure 9. Evacuation Coordinator protocol: resource discovery and heartbeat

5 Passenger and crew lists are obtained prior to embark by means of PaMEAS Registration Service.
The information is kept anonimized (GDPR restrictions) in DFB database.
6 This button emulated the actual departure of the ship. A further version may change this for an
automatic trigger based on e.g., the ship position, voyage particulars, etc.

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

20

On the other side, components subscribe and receive notification to the topic or topics they

want to receive notifications for. Upon this request, smart services (i.e., smart cameras, smart

bracelets, SRAP, PIMM, PaMEAS, SSS, SST, VDES Gateway onboard, SHM) get the

notification. As a reply, they send back a message (i.e., /resource-discovery-response),

where they share with the PALAEMON Evacuation Coordinator their unique identifier, a

timestamp (to keep track of) and the current operation mode of the component (this is

documented in D7.5 – Uniform Data Exchange Modules – Interoperability Layer v2) [24].

Once all components have responded, the PALAEMON Evacuation Coordinator is completely

aware of all the active modules that are dependent of the actual evacuation status.

Beside this discovery phase, there is a periodic “health check” of all components. To deal with

this, the PALAEMON Evacuation Coordinator generates, every 45 seconds7 broadcasts a

/heartbeat-request notification, where the payload contains the ID of the originator of the

message (the PALAEMON Evacuation Coordinator), the timestamp and the current status of

the evacuation. In turn, components send back a /heartbeat-response, confirming their

availability and their current mode of operation. As a matter of fact, one of the features that

went beyond the scope of the project breakthrough is the reaction upon loss of contact with

components, i.e., what to do if one or more devices lose contact with the main system. We

studied the possibility of including a set of actions in such a case, but we mainly identified this

as a future operation to be tackled in forthcoming release. The reader must know that this

“liveness probes” are sent during all the voyage, regardless an incident has occurred or not.

However, in this project we must deal with evacuation scenarios, hence things will get worse

and the whole PALAEMON system must be ready for that and present a holistic management

process. Figure 10 presents the sequence diagram between the PALAEMON Evacuation

Coordinator and the rest of the components. For the sake of simplicity, the schematic

disregards all additional messages that may be generated as a consequence of this exchange.

When an incident happens, the Master gathers all the awareness of the situation, e.g., via

radio communications with the crew, Integrated Bridge System (IBS), information displayed

on PIMM8 that comes from the PALAEMON devices, etc. With all this information on the table,

he/she may take the decision of increase the evacuation level to “Situation Assessment”.

Thus, beside the legacy voice alert to officers and crew via “Direct Public Alert System”, the

Master has to switch from “Normal Operation” to “Situation Assessment” on PIMM’s interface

(Figure 19 shows main PIMM’s dashboard in page 29). When this happens, the process is

analogous to that of we described for the resource discovery. In this case, the notification is

sent using the /evacuation-coordinator topic, announcing in this case the new status of

the evacuation (alongside the ID of the originator and the current timestamp). In the reverse

sense, all the dependent components send back an acknowledgement (i.e., /evacuation-

component-status), confirming the correct reception of the new status and, at the same time,

sharing their current operation mode, which may have changed with this modification. Likewise

for this step, the process is replicated in the next phases of the evacuation9. Of course, it goes

without saying that these ICT and manual notifications go in parallel with legacy evacuation

management procedures (e.g., General Public Alarm System, etc.).

7 The sending rate can be configured.

9 It is worth stating that the evacuation process is reversible and the evacuation might be aborted at any
time.

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

21

Figure 10. Evacuation Coordinator protocol: evacuation status change management

To complement the content of this section, Annex II presents the message primitive exchange

between the PALAEMON Evacuation Coordinator and the underlying dependant components.

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

22

4 Overall system testing results

This section gathers the main integration evidence that demonstrate that the elements of the

PALAEMON Communications platform exchange information accordingly. In particular, we

reflect here the output of some transversal platforms or tools that come to showcase that

4.1 DFB (Apache Kafka & Elasticsearch) as system validator

The cornerstone of the PALAEMON Communications platform is based on Apache Kafka. We

opted for this streaming platform, instead of a more traditional approach based on a RESTful

interface for two main reasons:

1. The utilization of mainstream RESTful interfaces would have required as individual

specification per interface. Moreover, we should know beforehand a valid endpoint

(i.e., IP address + TCP port) for each one. Instead, with Kafka, the different modules

only need to know to which topic they should read (i.e., subscribe) or write (i.e.,

publish).

2. The use of dedicated SSL (Secure Sockets Layer) certificates associated to an Access

Control List (ACL) offers a robust authentication and authorization solution. This

applies not only to external attacks (nobody can read or write on the Kafka Broker

without a valid certificate), but also internally, as only allowed partners have rights to

ready or write on some message topics.

We observe in Code snippet 2 an example of communication between two components, where

we print out the topic name, the offset and partition10 and the JSON object sent. In this

particular case, the PALAEMON Evacuation Coordinator broadcast a /resource-

discovery-request, as explained in the previous section; right after, the Smart Safety

System replies back a /resource-discovery-response.

==

Received message (resource-discovery-request:0:119)

{'originator': 'Evacuation Coordinator', 'timestamp': '2022-11-

23T11:32:37.640964Z', 'evacuation-status': 0}

==

==

Received message (resource-discovery-response:0:553)

{'component_id': 'SSS', 'operation_mode': 0, 'timestamp': '2022-11-

23T11:32:37.914780+00:00'}

==
Code snippet 2.Kafka logging sample (/resource-discovery-request and /resource-discovery-response

notifications)

It goes without discussion that Kafka messaging plays a critical role in the PALAEMON

information schema. In this section we only include this example; Section 5 includes more

snippets to showcase the correct operation of the components. Furthermore, Annex III

compiles the list of all Kafka topics utilized in the context of an evacuation.

10 Offset and partition are internal attributes that Kafka uses to handle its internal queues. This goes out
of the scope of this report.

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

23

4.2 PALAEMON Evacuation Coordinator as system validator

In Section 3 we summarized the main protocol defined to communicate the current Ship’s

evacuation status and the components’ operation mode (in the reverse sense of

communication). Designed as a companion service to be displayed as part of the IBS, we

have forked the baseline of the PALAEMON Evacuation Coordinator and have added a

Command-Line Interface to have all the information visible at a simple glance. This lightweight

component basically subscribes to all the topics that have to do with the evacuation

management and displays the data in a visual way.

Figure 11 shows the main layout, split into two main parts: 1- the top part presents the current

evacuation status (“Normal status” in this example). 2- The main part of the visualization

compiles the list of devices and components that “listen” to the PALAEMON Evacuation

Coordinator. This is represented as a table where each of the “dependent” components (first

column) show: the unique identifier of the module (there might be more than one device per

component, for instance the case of smart cameras and bracelets), the number of active

components; the operation mode and, finally, the time the component replied to one of the

coordinator messages (i.e., timestamp).

Figure 11. Evacuation Coordinator Monitor layout (Normal Status)

Figure 12 complements the previous view with another example; this case corresponding to a

more advanced phase in the evacuation chain, i.e., “Passenger Mustering”. At this stage, the

General Public alarm has sounded and passenger, with the support of the crew and

PALAEMON Smart Evacuation Devices (throught their Smart Bracelets and PaMEAS

messaging services) proceed to reach their safest/closest mustering point. In terms of

operation mode, we can appreciate as some of the services have modified their behaviour,

adapting to the severity of the situation. For instance, Smart Cameras start recording the

videos they process and transmit the multimedia file to the Voyage Report generator. In

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

24

addition, they notify the detection of hazardous events (e.g., stampede, blocked corridor).

Aside this example, Deliverable D7.2 (Uniform Data Exchange Modules – Interoperability

Layer v2) [25] contains the mapping tables between components’ operation modes and their

actual description.

Figure 12. Evacuation Coordinator Monitor layout (Boarding to MEV Status)

4.3 Kibana (Canvas) as system validator

Elasticsearch [26] was chosen as the main database to persist all the information coming from

the PALAEMON Communications Platform, that is, from data sources and smart evacuation

services. Elasticsearch supports a handful of frameworks that bring new features to the

ecosystem. One of them is Kibana [27], an open user interface (i.e., web-based) that adds a

visualization layer on top of the data stored in Elasticsearch. It is worth highlighting that this

framework or tool does not belong to the evacuation process, but we use it to check that the

information is correctly saved in the repository. Besides, we use one of its most attractive

features, Canvas [28], an add-on that produces eye-catching infographics with little effort,

extracting the information out of Elasticsearch. For the sake of testing, we include in this

section a handful of visual representations that come to showcase that the information

generated in the system has successfully reached the database.

An interesting feature of Canvas is that it includes a rather complete built-in Structured Query

Language (SQL) query syntax that works over a document-oriented database. This is not

usual, as these domain-specifice languages are tailored to work with relational databases

(e.g., MySQL). Nonetheless, with some basic queries we can extract and display valuable

voyage information. For instance, Figure 13 shows, on the left hand, an SQL query defined

on Kibana dashboard11. In this particular query, we are searching the latest value, in terms of

timestamp, stored as part of the “evacuation-coordinator*” index12, where the “*” illustrates that

the use of wildcards or regular expressions are permitted. At the right, a tabular representation

11 Canvas is a fully-fledged feature completely embedded as part of Kibana.
12 An “index” can be seen as independent logical namespaces that separate different types of data. As
analogy, this could be a table or database in a relational database.

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

25

of the response. As a matter of fact, this value will be displayed as part of the Canvas

visualizations we include below.

a) Canvas SQL query b) Elasticsearch response preview

Figure 13. Kibana Canvas SQL query example

Explained in layman’s terms, Canvas can be seen as a dynamic “PowerPoint”-like

presentation, where the displayed data is directly taken from Elasticsearch. Figure 14 could

be used as the front page of the infographics, where we take some static information, such as

some ship particulars (e.g., Vessel name, Flag, IMO number, etc.). We combine this with some

voyage-specific information: departure and arrival ports, departure time, etc. Additionally, we

include some aggregated data, as the number of passengers and crew member registered in

the ship. This information can be calculated by summing up all the users registered through

the PaMEAS Registration process. The reader might recall that all personal information is

anonymized and stored in Elasticsearch; here we only calculate the total figures.

Figure 14. PALAEMON Canvas – Front page

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

26

The second “slide” mimics a conning display that prints basic information captured by the

PALAEMON system, as shown in Figure 15. Namely, the VDES transceiver overhears the

vessels’ legacy AIS (Automatic Identification System) transmission and gets the current

position, navigational status, type of manoeuvre, speed over ground and heading. The bottom

right frame prints the latest value measured by the motion sensors of the Ship Health

Monitoring: yaw, pitch, roll, surge, sway and heave. In addition, the top left corner indicates

the current evacuation status, where “0” means “Normal Status”.

Figure 15. PALAEMON Canvas - Conning Panel (emulation)

Figure 16 shows a sample of the passengers list. In a normal situation, this information is

sensitive and, according to GDPR regulation [29], personal data shall not be shared with

external services. Technically speaking, this should be either save in a different and dedicated

database or anonymized before its storage. In the context of PALAEMON, we have opted for

the second option. PaMEAS, when users (i.e., passengers and crew) register into the platform,

handles the information and saves an anonymized copy in Elasticsearch. Of course, the

process is reversible, but only PaMEAS services have the capacity to “undo” the process.

Figure 16. PALAEMON Canvas - Passenger list

Nonetheless, when people’s lives are in danger, GDPR restrictions are disclosed and the use

of this personal data becomes possible. Attending to GDPR’s Recital 46 [30]: “The processing

of personal data should also be regarded to be lawful where it is necessary to protect an

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

27

interest which is essential for the life of the data subject or that of another natural person”.

With this example we present the possibility of “opening” this sensitive data in some critical

situations (PaMEAS supports a RESTful API that returns this information “unanonymized”).

To give the reader an example, a passenger with disabilities may require special assistance

and may need to directly ping a responsible person (e.g., familiar, doctor, etc.). As a matter of

fact, the passenger list presented in the figure was created for demonstration purposes. As

we have stated above, the information is saved anonymized, and Kibana and Canvas cannot

use PaMEAS’ API to fetch the data.

Still on the personal plane, Figure 17 display a sample of the biometrics information generated

by one of the Smart Bracelets, worn by an arbitrary passenger (anonymous in this case, as

the evacuation status is “0”). Another feature of these wristbands is, as shown in the figure,

the possibility of either automatically or manually (there is a physical button that should be

pressed for 5 seconds) trigger an alarm, in this case associated to an “Accidental Fall”. As a

side note, this information can be processed by the SRAP, which can perform an individual

risk analysis based on biomedical information, i.e., a level of oxygen saturation below a

particular threshold may mean that a person has fainted, hence assistance is necessary.

Figure 17. PALAEMON Canvas - Passenger monitoring

Canvas also demonstrates that the PALAEMON system is able to spread messages to the

outer world. As we thoroughly cover in Deliverable D7.3 (Deployment of VDES – v2) [19], we

have designed and developed a handful of VDES transceivers, used to send messages from

ship to shore and vice versa. Figure 18 presents some distress messages generated via VDES

transmissions, where the current situation: ship name, position, incident type, assistance

required, total number of passengers and crew, injured persons, damage of the ship. The

reader shall take into account that the last two are synthetic data and only illustrates potential

information that may be conveyed to Port Authorities or Search & Rescue teams.

To the best of our knowledge, the format of these messages (i.e., digitalized) lack any kind of

regulation or standard. Current actions are limited to transmitting VHF radio messages (i.e.,

voice) over a reserved channel, according to Global Maritime Distress and Safety System

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

28

(GMDSS)[31]. In this project, we present our own vision of what we consider a breakthrough

in terms of mayday message format.

Figure 18. PALAEMON Canvas - VDES outgoing signals

Finally, we must state once again that this Canvas cannot be seen as a usable asset to be

part of the evacuation management. We have leaned on it for purely illustrative purposes, as

it shows in a visual way that the information generated across the platform actually reaches

the main database of the system (i.e., Elasticsearch).

4.4 PIMM as system validator

NOTE: The layout presented in this report may be altered in the forthcoming weeks,

framed under WP8’s activities. The last feedback we have received from end users

during the last days drives us to carry out a handful of modifications tailored to the

needs of PIMM’s main users, ships’ Master.

As can be seen in Figure 19, PIMM serves as a visualization hub that that prints the information

coming from a number of data sources and services. The screenshot presents the dashboard,

the “Decision Support Center”. Aside this, there are two companion panels, one to show video

streams coming from the smart cameras (“Video Streaming Center”) and the other to display

the main outputs of PaMEAS and SRAP (“Incident Assessment Center”). In a nutshell, these

are the elements that are shown on the dashboard:

• Ship Stability Toolkit (SST): Motion predictions that come from the inputs of the Ship

Health Monitoring, AIS position, speed and heading and weather forecast information

(DANAOS’ API).

• Weather Forecast Toolkit (WFT): From a Maritime Incident Dataset analysis done by

KT [32] and applying some Machine-Learning-based classification algorithms, the

system presents a dual good-bad practices approach as a function of the current and

forecasted weather conditions.

• Decision Support System (DSS): According to the incident nature (e.g., fire,

grounding, etc.), this components presented the Master a number of suggestions taken

from International Safety Management (ISM) Code [33]. Displayed actions depend on

the current status of the evacuation phase.

• Smart Risk Assessment Platform (SRAP). This component evaluates and quantifies

the risk throughout three phases during the evacuation: situation assessment,

mustering and pre-abandonment. The main purpose of these figures is to increase the

awareness of the Master and Bridge Command Team so that they can take more

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

29

reliable decisions. The main outputs are split into two main parts: a general output (part

of the “Decision Support Center” that suggests the Master to: 1- Sound the General

Alarm (or not); 2- Abandon the Ship (or not). Besides, the “Incident Management

Center” breaks down the vessel into a number of independent blocks (see Figure 20),

where the risk level is handled independently. These so-called “blocks” do correspond

with the concept of “geo-fences” handled by PaMEAS in their Real-Time Location

System.

• PALAEMON Evacuation Coordinator: We described in Section 3 the role of this

component as the main notifications manager during an incident. On PIMM, the Master

is the only person actually capable of switching between evacuation states. The way

to do that is as intuitive as clicking on the respective status, as shown in Figure 21,

where all the chain is displayed. As a matter of fact, for this late version there are some

internal status (i.e., Activation of Evacuation Protocol, Alert Passengers, Mustering

Complete), but these are internal stages that update PaMEAS and SRAP’s internal

operation modes (these modifications are not transmitter following the main

/evacuation-status Kafka topic).

• Smart Cameras: As of the moment the General Alarm sounds (not before), the Smart

Cameras stream real-time video that can be displayed on the PIMM.

• PaMEAS: This module is responsible for the evacuation management and interaction

with passengers and crew. Thanks to the real-time location service, PaMEAS is aware

of the current position of all the people. Moreover, the utilization of smartphones and

smart bracelets allows a bidirectional communication with users, leading to the delivery

of messages and recommendations.

Figure 19. PIMM General View (Decision Support Center)

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

30

Figure 20. PIMM general view (SRAP Danger in ship)

Beside all the above elements, Smart Safety System’s is indirectly connected to the PIMM.

Namely, we use this component to initiate (emulate) an incident, e.g., fire, grounding, etc.

When the SSS generates an event, PIMM display parses the type (displayed at the top left

corner) and adapts the DSS suggestions to it.

Figure 21. PIMM general view (Evacuation Status)

Under the hood, PIMM also behaves as an information sink that gets data from almost all

services. Mainly, via Kafka, where PIMM subscribes to almost all topics that go across the

PALAEMON platform. Nonetheless, the component offers a connection hook in the form of a

RESTful API, where we can assess the trustworthiness of the information managed and

displayed on the screen. Figure 22 presents the list of available services that we can use to

retrieve information. The complete request/response exchange for all these methods can be

found in Annex IV.

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

31

Figure 22. PIMM Postman collection - list of services

Finally, For a deeper description of this component and all its connections, the reader shall

refer to D6.3 (PALAEMON Interfaces and HMIs toolkit) [34], D6.4 (Development of

PALAEMON On-Board Decision Support System) [35] and D6.5 (PALAEMON Incident

Management Module - PIMM) [21]. In addition, all the interactions with SRAP and PaMEAS

will reflected in WP8’s deliverables, where real evacuation scenarios will be assessed.

4.5 Grafana as system validator

Similarly to Kibana, Grafana [36] offers a visualization layer on top of raw information, hard to

read by the non-expert eyes. Instead, it offers a plethora of widget and graphics that aggregate

and present the information in a more friendly and interpretable manner. Moreover, Grafana

supports direct connectors with Kafka, Elasticsearch, Prometheus, and a long etcetera. As for

Elasticsearch, we have opted for Kibana, as we described in 4.1; on Kafka, we can see some

of the main metrics in Figure 23.

Figure 23. Grafana Kafka Monitoring Sample

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

32

A simple glance at the screenshot let us observe what parameters are monitored: broker

status, traffic sent per topic – inbound and outbound, consumer requests per second, etc. The

main outcome we can extract out of this figure (without delving into Kafka’s technical

particularities) is that there is a number of messages from many topics going across the

PALAEMON platform.

4.6 Voyage Report Generator as system validator

Finally, the last component to be “activated” during the evacuation process is the VRG. Even

though it does not play an active role during the evacuation management, it is sensible to

consider a part of it. In essence, it gathers all the information generated during a voyage (and

during the evacuation) and prepares a thorough report, with all the data (raw from

Elasticsearch and recorded videos from the Smart Cameras). Figure 24 spans the sequence

diagram tackled by the VRG for this.

Figure 24. PALAEMON Voyage Report Generator sequence diagram

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

33

Despite the cue (for the VRG) officially starts when the PALAEMON Evacuation Coordinator

sends the /voyage-report-generator-request notification (which is followed by an

immediate /voyage-report-generator-response acknowledgement sent by the VRG),

when the General Alarm is triggered (this corresponds to the “Passenger mustering” status

switch), Smart Cameras proceed to record locally the video they are capturing13. Once a video

clip is completed, they automatically transmit the file to the VRG.

Alongside this “background” operation, the VRG fetches all useful information from

Elasticsearch (e.g., event logs, sensors data, passenger and crew lists – unanonymized, etc.).

To do this, we have leaned on Elasticsearch dump [37], a command line tool that seamlessly

grasps all documents stored from a list of indices. As the amount of information to dump may

be large, this operation may take tens of seconds to finalize. In parallel, the component is still

receiving video clips from the various smart cameras.

When all the data is available, the VRG takes all “displayable” data and generates a PDF

report, where the information could be much more intuitively interpreted. The reader can refer

to Annex V to check the visual information represented in the report. When the PDF is ready,

a compressed (i.e., ZIP) file is created, including this document and all the data harvested in

the process, that is, data from Elasticsearch, saved in a “json” file per index; moreover, video

clips (.avi) are also attached. In order and deter the access from unexpected hands, the ZIP

file is protected with a password. In real conditions, only the DPA shall be able to open and

see this information.

As the information may be lost if we only keep it locally (e.g., a fire damages the hardware or

the ship sinks), the VRG takes the ZIP file and sends it to two different destinations: 1- a MinIO

instance deployed on PALAEMON-02 (shore infrastructure); 2- a digital copy is sent via mail

to the predefined DPA.

Finally, the VRG sends a Kafka message under the /sms-report topic. This message notifies

the Safety Management System that a new report is generated and can be found at the

corresponding location in MinIO. As we will see in Section 5.5, the SMS automatically updates

its internal database and appends a new incident report from the information received in this

message. Needless to say, the SMS tool counts on its own access control list, and this

information shall be only accessible by the same DPA, who should own a personal account

on the platform.

Last but not least, it is worth highlighting that the whole VRG operation may take a couple of

minutes, as the size of the full report may be in the order of Gigabytes. Considering that a real

evacuation might last many hours, the storage of a number of video files from cameras,

alongside information from sensors, etc. may end up in a massive amount of information.

Focusing on the technical validation per se, Code snippet 3 covers the messages exchanged

between the PALAEMON Evacuation Coordinator and the Voyage Report Generator. We can

see the format of the /voyage-report-generator-request and /voyage-report-

generator-response, which basically include a timestamp, an originator identifier and a

simple value that request the creation of the report and confirms it, respectively.

13Further versions may include multimedia data from more sources (AR glasses video and audio,
messages from PaMEAS, video from ship’s Close Circuit Television, etc.).

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

34

==

Received message (voyage-report-generator-request:0:158)

{'originator': 'Evacuation Coordinator', 'timestamp': '2022-11-

29T11:14:37.376981Z', 'action': 1}

==

==

Received message (voyage-report-generator-response:0:209)

{'timestamp': '2022-11-29T11:14:37.666618', 'originator': 'VDR', 'status':

'OK'}

==

==

Received message (sms-report:0:182)

{'Vessel': 'Elyros', 'UDE Type': 'Fire', 'UDE Description': 'Fire at Deck

8', 'Ocurred On': '2022-11-29T11:16:17.128824', 'Port': 'Piraeus',

'objectName': 'Elyros_2022-11-29_1116_AHF7dNBDXWPBTND.zip', 'bucketName':

'palaemon-reports'}

==
Code snippet 3. Voyage report generator message exchange

As for the third message, /sms-report, it carries more interesting information. We have

adapted the format to the inputs the SMS tool needs to document an incident14. Namely, ID of

the vessel, type of incident, timestamp, associated port, name of the MinIO Bucket and name

of the file (ZIP).

We include below some screenshots that come to proof the correct operation of the

component. Figure 25 shows the bucket (can be seen as a folder) dedicated to store all the

VRG reports on MinIO (PALAEMON-02). We can see the huge size (>60 GB) of data stored).

Figure 25. MinIO (part of DFB) repository in the cloud - PALAEMON buckets

14 In a regular process, the SMS user has to manually input these parameters to register an incident.

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

35

Figure 26 “zooms into” the folder and shows some of the reports stored in the system. We can

see framed in red the report we have used for this verification (we have captured the Kafka

messages before).

Figure 26. MinIO "palaemon-reports" bucket zoom

If we download the report and try to unzip the file, a popup windows demands us to type the

password, as shown in Figure 27.

Figure 27. Voyage report zip file password request (Spanish Operative System)

Though nobody but DPAs should have access to these reports, for demonstration purposes,

we have created mocked reports that do not contain any real or sensitive information. After

uncompressing the file, Figure 28 reflects the content of the main folder (root path). In addition,

we have a dedicated folder to dump all the videos transmitted by the different cameras (Figure

29). In this particular example, video clips are generated every 30 seconds (approximately).

The reader could easily extrapolate, according to the size of an individual 30’’ clip (between 5

and 9 Megabytes), the overall space required to store hours of footage that come at the same

time from a handful of different cameras.

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

36

Figure 28. Voyage Data Report content (Spanish Operative System)

Figure 29. Voyage Data Report smart-cameras folder content (Spanish Operative System)

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

37

5 Individual validation

This section addresses individual verifications of the main software components. For the sake

of simplicity, we stick to Kafka messages logging as the main check to demonstrate that

components do what they are supposed to do.

All these components have their own individual validation reporting reported in their

own deliverables and/or will be complemented in WP8’s reports (mainly PaMEAS,

whose complexity will be addressed aside this document).

5.1 Smart Bracelets

In terms of access, smart bracelets presented a technical limitation that led to seeking an

alternative way to establish a communication with these devices. Due to hardware and battery

restrictions, the utilization off SSL certificates (and all the operations that go alongside the

authentication process) was ditched. Instead, we have deployed a MQTT broker as part of the

DFB Access level. As for the security, there is a dedicated user and password protection.

This means that we must add a middleware that translate between Kafka and MQTT and vice

versa; otherwise, the communication with the rest of the PALAEMON components would not

be feasible. To deal with these on-the-fly Kafka ⇄ MQTT mapping (among other features), the

DFB Access includes an instance of Apache NiFi [14]. Without digging into the technical

details, this framework permits a straightforward “low-code” configuration of the flows, where

we subscribe to MQTT or Kafka topics, transform the information if needed and publish on the

other (if the subscription was on Kafka, it publishes on MQTT, and the other way around).

Figure 30 shows a couple of examples that take bracelets’ data and forwards to Kafka.

Figure 30. NiFi MQTT to Kafka flow sample (screenshot)

We have configured as many flows as needed ensuring to span all the topics that have to do

with smart bracelets. For demonstration purposes, Figure 31 shows a MQTT message that

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

38

comes from the translation of the /heartbeat-request topic. As a matter of fact, we have

used a Windows tool called MQTT.fx [38] to subscribe to all topics and visualize the data.

Figure 31. Smart Bracelets MQTT communication sample (/heartbeat-request)

Following this example, the pipeline would be as follows:

1. [Kafka] PALAEMON Evacuation Coordinator generate the /heartbeat-request

message.

2. [MQTT] NiFi translates from Kafka and sends the same message on as /heartbeat-

request topic.

3. [MQTT] One of the smart bracelets, “SB0001” receives the request and proceed to

reply via /heartbeat-response topic.

4. [Kafka] NiFi intercepts the MQTT transmission and forwards the same message

through Kafka (as shown in Code snippet 4).

==

Received message (heartbeat-response:0:484215)

{'timestamp': '2022-04-20T08:16:45.725', 'component_id': 'SB0001',

'operation_mode': 0, '_topic': 'heartbeat-response', '_qos': 0, '_isDuplicate':

False, '_isRetained': False}

==
Code snippet 4. Smart Bracelets Kafka sample (/heartbeat-response)

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

39

A complementary example is shown in Figure 32 and Code snippet 5. In this case, the original

source is “SB0001”, which sends some biometrics through the /smart-bracelet-sensor-

data topic (MQTT).

Figure 32. Smart Bracelets MQTT message sample (/smart-bracelet-sensor-data)

As the output of the pipeline, NiFi generates the final /smart-bracelet-sensor-data on

Kafka, which reaches the DFB and is stored into Elasticsearch. In fact, we demonstrated the

integration of this flow in Section 4.3, where we plotted the hearbeat and oxygen saturation of

an arbitrary user on Kibana Canvas (Figure 17 in page 27).

==

Received message (smart-bracelet-sensor-data:0:12395)

{'timestamp': '2022-04-20T08:16:45.657877', 'component_id': 'SB0001', 'HR': 50,

'O2': 99, 'Temp': 24, 'Charge': 0, 'pitch': -6, 'roll': -90, 'heading': 51}

==
Code snippet 5. Smart Bracelets Kafka sample (/smart-bracelet-sensor-data)

Besides this uplink message, smart bracelets also notify when an event is produced (either

the device has detected an accidental fall or the user has pressed the button of the wristband

for five seconds), using the /smart-bracelet-event-notification to that effect. In

addition, PaMEAS can also produce simple commands to be printed on the bracelets’ screens

by means of the /smart-bracelet-pameas-evac-msg topic. Some visual examples of how

these messages are translated into simple visual inputs can be found in Annex VI. As a matter

of fact, these snapshots are taken on the v3 of the wristbands. WP8’s deliverables will dig into

PaMEAS’ messaging and notification system.

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

40

5.2 Smart Cameras

Under normal conditions, smart cameras operate as a standalone component, where the

cameras capture the video and the companion Processing nodes execute some computer-

vision algorithms. In terms of integration with the PALAEMON Communications platform,

cameras send (asynchronously) every time the number of people detected changes using the

/smart-camera topic, represented in Code snippet 6.

==

Received message (smart-camera:0:97432)

{'component_id': 'camera-02', 'people_count': 1, 'timestamp': '2022-11-

23T12:02:42.216186'}

==

==

Received message (smart-camera:0:97433)

{'component_id': 'camera-02', 'people_count': 0, 'timestamp': '2022-11-

23T12:02:44.607789'}

==
Code snippet 6. Smart Cameras Kafka sample (/smart-camera)

Furthermore, as of the ship evacuation status switches to “Situation Assessment”, cameras

modify their operation mode and add three additional features to their workflow.

1. Detected events – people trapped / stampede (via /smart-camera-alarm Kafka topic,

as shown in Code snippet 7).

2. Real-time video streaming from the cameras is visible on PIMM’s “Video Streaming

Center. In the example shown in Figure 33).

3. Processing nodes proceed to record the video and automatically transmit the files (.avi)

to the VRG, as we described in Section 4.6.

==

Received message (smart-camera-alarm:0:7713)

{'component_id': 'camera-02', 'event_code': 1, 'timestamp': '2022-11-

29T12:33:33.966009'}

==

==

Received message (smart-camera-alarm:0:7714)

{'component_id': 'camera-04', 'event_code': 3, 'timestamp': '2022-11-

29T12:35:46.550523'}

==
Code snippet 7. Smart Cameras Kafka sample (/smart-camera-alarm)

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

41

Figure 33. Smart Cameras main dashboard layout (PIMM’s Video Streaming Center)

5.3 Smart Safety System

In the context of an evacuation, SSS offers a drag-and-drop graphical user interface that crew

members can use (through e.g., a smartphone or tablet) to notify an event and pinpoint at their

exact position (in terms of deck and position in X and Y coordinates). As we can see in Figure

34, this component presents three main areas: 1- the central part corresponds with the

visualization of the blueprint of a deck, which we can select by clicking (or touching) 2- an

option at the right part of the layout. 3- Finally, the bottom part displays some icons, through

which we can select the type of incident. Following their order of appearance, from left to right,

these are the notifications users can communicate:

• Officer required at a particular position

• Crew member (regular) required

• Hotel staff required

• Fire detected

• Smoke detected

• Flooded area

• High voltage

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

42

• Medical assistance needed

• Person with disability needs assistance

• New muster station (ad-hoc)

• Restricted area (no-go area)

• Checked area

Figure 34. Smart Safety System Main layout

These notifications are transmitted across the /smart-safety-system topic (Kafka), thus

subsequent smart services can gather the information and react accordingly. By taking a look

at Code snippet 8, we can easily appreciate the structure of the event, where we observe the

type (from the list given above), the timestamp, and the position, combination of deck number

plus X and Y position.

==

Received message (smart-safety-system:0:734)

{'type': 'Fire', 'timestamp': '2022-11-23T10:55:17.737907+00:00', 'deck': 4,

'position_x': 24.48, 'position_y': -2.81}

==
Code snippet 8. Smart Safety System Kafka sample (/smart-safety-system)

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

43

5.4 VDES transceiver and gateway

Nowadays we can state that VDES systems have deservedly become the spiritual successor

of legacy AIS communications, as it presents a more efficient use of the radio spectrum,

permitting to deliver more information (i.e., payload) using less bandwidth in ship-to-ship, ship-

to-shore and even ship-to-satellite radio links15.

In PALAEMON, we have designed and manufactured up to three different VDES Transceivers

(prototypes), including all the hardware (antennae, etc.), Software Defined Radio (SDN) and

a middleware component, the VDES gateway, that bridges with the PALAEMON platform.

Figure 35 shows two of the three transceivers that we have used for the validation tests. One

of them plays the roles of a transceiver installed onboard Elyros; the second one to be part of

an installation ashore. The third one was kept as a backup solution in case of major necessity.

a) VDES Transceiver (Ship) b) VDES Transceiver (Shore)

Figure 35. VDES Transceiver Prototypes (ship & shore)

In terms of validation, Kafka streams come to demonstrate that the end-to-end VDES data

flow works as expected, as they appear in both sides of the communication, acting as the

intermediate between DFB and VDES. VDES transceivers have direct participation in three

different scenarios:

For the first use case, the receiver overhears AIS transmissions from nearby transponders

(vessels, port authorities). If we parse the identifier and match to that of the ship, we can

extract the information of the vessel itself, thus legacy AIS data will be seamlessly integrated

as part of the PALAEMON system. Code snippet 10 presents an arbitrary message sent

through the /ais-position topic.

==

Received message (ais-position:0:6126)

{"cog" : 241.8000030517578, "cog_available" : true, "latitude" :

43.55862808227539, "longitude" : 10.297853469848633, "manoeuvre_ind" : 0,

"nav_status" : 3, "pos_accuracy" : 0, "rate_turn_rotais" : 0, "sog" : 0.0,

"sog_available" : false, "th_available" : true, "timestamp" : "2022-11-

10T12:45:43.925180", "true_heading" : 50, "user_id" : 247343700}

==

Code snippet 9. VDES Gateway Kafka sample (/ais-position)

15 Ship-to-satellite communications is a feature not covered by PALAEMON’s prototypes.

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

44

The second feature gathers weather information forecasts (a new prediction is generated

every three hours) from an external service (accessible through an Internet connection). The

data workflow is described with all details in Section 5.8. As output, the raw object appears as

shown in Code snippet 10.

==

Received message (weather-service:0:12783)

{'Timestamp': '2022-12-02 06:00:00', combDirectionDegrees': 86.61, combPeriod':

2.87, combSWHMeters': 0.3, currentsDirectionDegrees': 45.0, currentsSpeedKnots':

0.05832, hum%': 82.5, iceCover': 0.0, lat': 45, lon': 14, mslhPa': 1017.65,

sea': true, swellDirectionMeters': 90.74, swellPeriod': 3.07, swellSWHMeters':

0.27, tempCelciousDegrees': 12.35, visKm': 24.135, wavesDirectionDegrees':

58.44, wavesPeriod': 1.68, wavesSWHMeters': 0.11, windDirectionDegrees': 56.33,

windSpeedKnots': 14.71608}

==
Code snippet 10. VDES Gateway Kafka sample (/weather-service)

The third and last scenario was briefly outlined in the section where we spoke about Kibana

Canvas as system validator. When the General Alarm sounds, the PALAEMON platform

periodically sends distress or mayday messages through the VDES radio interface. This way,

the transmitted data might reach close-by vessels or port authorities, thus speeding up the

search and rescue process, if needed.

==

Received message (mayday-message:0:4111)

{"via" : "VDES", "ship_name" : "Ship for VDES Demo", "ship_position" :

[43.549484, 10.297393], "timestamp" : "2022-10-28T10:21:08.524562138Z",

"incident_type" : "Contact", "assistance_required" : "None",

"number_passengers" : 1234, "injured_people" : 56, "crew_on_board" : 789,

"weather_conditions" : "Unknown", "damage_extent" : "42%"}

==
Code snippet 11.VDES Gateway Kafka sample (/mayday-message)

5.5 Safety Management System

When it comes to deal with safety procedures and according to the International Safety

Management (ISM) shipping companies have to develop and maintain a platform to manage

all safety/contingency plans, policies and strategies. In the scope of PALAEMON, SMS tool

presents two instances (one onboard and another one ashore) that cope with the addition and

updates of safety information, in the form of manuals or checklists, for example. The platform

is presented to the user as a graphical user interface; any information query or addition could

be done in a very intuitive manner. It goes without saying that only allowed users have access

to the information.

As for the extent of the different instance, whereas that of onboard focuses on a single ship

(i.e., Elyros in this project), ashore platform controls and manages the whole fleet. Said in

other words, SMS behaves as a centralized system where the core (i.e., shore) is always

synchronized with the information generated on the onboard instances (i.e., each ship should

have its own SMS tool up-and-running).

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

45

In order to demonstrate the main breakthrough achieved in the project, we have come up with

a link between this tool and the Voyage Report Generator. Thanks to this binding, the

PALAEMON system yields a semi-automatic registration of incidents16, where the user

intervention is not required. In a nutshell, when the VRG generates a report and uploads the

final file (i.e., ZIP) to the repository in the cloud (i.e., MinIO), the underlying Kafka notification

(i.e., /sms-report topic) warns the SMS tool that a complete report is available and can be

retrieved. The content of the message (Code snippet 3 in page 34) contains some basic

information that is used to automatically created the corresponding entry in the SMS database.

The full VRG’s report is automatically downloaded, as shown in Figure 36 and all files are

inserted in the placeholder produced before.

Figure 36. Safety Management System - Report updated to cloud repo (console proof)

Figure 37 corroborates what we have seen with the previous command-line logging. We can

observe in the main user interface that the report has been successfully uploaded onto the

SMS tool (i.e., the unique ID of the file matches). Moreover, the tool offers a built-in PDF

viewer to read the report created by the PDF.

Figure 37. Safety Management System - ISM Dashboard visualization of report generated by the VRG

16 Though to be used for a post-incident analysis carried out by an authorized DPA.

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

46

5.6 Ship Health Monitoring

This component is composed of a handful of motion sensors that monitor six degrees of

freedom by means of built-in accelerometers, magnetometers and gyroscopes.These devices

measure accelerations in the main three axes (i.e., X, Y and Z), and the corresponding three

angular velocities between them. Though the SHM module mainly forward this raw

information, other services may combine or aggregate the data in order to calculate more

advanced phenomena, like deflection or torsion of the hull.

In terms of demonstration, the sensors generate a measurement every 5 seconds. SHM’s

processing node17 gather the data and proceed to forward to DFB through the /shm-report

topic, with the format presented in Code snippet 12. As a matter of fact, this information will

be used as input in the next component: Ship Stability Toolkit.

==

Received message (shm-report:0:3576)

{'component_id': 'shm', 'timestamp': '2022-11-30T08:41:03Z', 'heave': 0.0,

'accelerometer_x': -0.10000000149011612, 'accelerometer_y': 0.0,

'accelerometer_z': -9.800000190734863, 'yaw': 106.0, 'pitch': -

0.30000001192092896, 'roll': -0.20000000298023224}

==
Code snippet 12. Ship Health Monitoring Kafka sample (/shm-report)

Additionally, the Processing node can generate asynchronous alerts in case it detects a

potentially dangerous situation, e.g., the ship is listing. In this case, a different message is

immediately generated and, using the /shm-notification topic. On this particular example,

PIMM grasps this notification and display a new message that identifies this as a type of

incident that may unleash the “Situation Assessment” status. The format of the object is shown

in Code snippet 13.

==

Received message (shm-notification:0:30)

{'timestamp': '2022-11-30T08:42:26Z', 'component_id': 'shm', 'alarm_type':

'Pitch>2', 'accelerometer_x': 0.0, 'accelerometer_y': 0.0, 'accelerometer_z':

0.0, 'heave_velocity': 0.0, 'heave_acceleration': 0.0, 'heave_ship_motion': 0.0,

'yaw': -46.70000076293945, 'pitch': 3.9000000953674316, 'roll': -9.5}

==
Code snippet 13. Ship Health Monitoring Kafka sample (/shm-notification)

5.7 Ship Stability Toolkit

This component predicts the maximum motions likely to happen according to the current

conditions (i.e., ship stability, speed, heading, weather). SST takes the information flows

generated through the /weather-service, /ais-position, /shm-report and /shm-

notification topics (this last one would reflect a hazardous situation).

17 The motion sensors do not have the capacity to communicates with the PALAEMON platform by
themselves. There is a so-called Processing Node (i.e., laptop) that centralizes the data and streams
the information via Kafka messages.

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

47

But before that, we have created a model that forecasts the ship motions. Based on a 3D

version of Elyros’ hull, we have used the WAMIT simulation environment [39] to get the

hydrodynamic Response-Amplitude-Operators (RAOs) properties. These values act as the

input in a Matlab’s toolchain to obtain the motion of the ship in different seaways. Due to the

computational complexity behind these calculations, we have created a database that

contains the pre-calculations. This repository is stored alongside the SST; hence the outputs

are on hand and we can get the results with negligible latency.

The way to obtain the predictions is as follows: the SST aggregates the values obtained from

the Kafka messages and queries the databases to fetch the closest values to the current

conditions. An arbitrary example of the message output (/stability-toolkit) can be found

in Code snippet 14.

==

Received message (stability-toolkit:0:2927)

{'state': 0, 'timestamp': '2022-11-23T10:42:34.354107+00:00', 'fn': 0, 'Hs': 0,

'L0': 0, 'beta': 0, 'head': 0, 'Surge': 19.6153, 'Sway': 9.536, 'Heave': 5.6295,

'Roll': 15.5877, 'Pitch': 15.9844, 'Yaw': 7.7809}

==
Code snippet 14. Ship Stability Toolkit Kafka sample (/stability-toolkit)

It is worth highlighting that this object contains predicted motion values, meaning that there

will be different to those of generated by the SHM. Below we briefly describe each of them.

• State – Vessel initial state /heeling angle

• fn – Vessel speed over ground

• t – Wave peak period

• Hs – Significant wave height

• L0 – Wave length

• beta – Wave direction

• head – Vessel’s heading

• surge – Expected surge

• sway – Expected sway

• heave– Expected surge

• roll – expected roll

• pitch – Expected pitch

• yaw – Expected roll

The reader might refer to D3.4 (Ship Stability Toolkit – v2) [18] for a more complete description

of the process.

5.8 Weather Service

It goes without discussion that weather plays a critical role during an incident and its

subsequent evacuation. Alongside light (evacuations at night-time are extremely more

complicated to handle than those that happen with direct sunlight), bad weather (e.g., harsh

sea, storm, high waves, etc.) is another factor with utmost impact over evacuation procedures.

In PALAEMON we rely on an external source to get trustworthy weather information. Namely,

we take the data from National Oceanic and Atmospheric Administration’s (NOAA) API, which

generates a forecast every three hours. As input, the API needs the location of the ship, which

we extract from Kafka’s /ais-position topic. We include in Figure 38 a screenshot that

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

48

embraces the request and response exchanged through a RESTful interface (i.e., HTTPS).

We can see that, for the request, we need to include three parameters: timestamp (we have

used “latest”, but we could have queried any past timestamp), latitude and longitude. As for

the response, the object covers the main weather and sea phenomena.

Figure 38. Weather service REST API request and response example

To emulate an end-to-end communication with NOAA’s service (on the Internet), we get the

information at PALAEMON’s instance ashore (PALAEMON-02). As of this moment, the

following pipeline is executed:

1. (Shore) VDES gateway sends the message to the VDES Transceiver via MQTT. This

follows a similar process to that of the Smart Bracelets (HTTP → MQTT). However,

this is an internal component task that goes out of the scope of this deliverable.

2. VDES TRX ashore broadcast the weather message via VDE channel. We invite the

reader to get acquainted on this radio transmissions by reading D7.3 (Deployment of

VDES – v2) [19].

3. (Ship) VDES TRX onboard receives the transmission and goes in the reverse direction:

the physical-level message is translated into a JSON object, which is forwarded to the

VDES Gateway (onboard) through a MQTT notification. Note: Shore and Ship’s MQTT

infrastructures are completely independent and cannot communicate with each other.

4. VDES Gateway gathers the messages and sends to the PALAEMON Platform using

the /weather-service topic, as illustrated in Code snippet 15.

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

49

==

Received message (weather-service:0:12783)

{'Timestamp': '2022-12-02 06:00:00', combDirectionDegrees': 86.61, combPeriod': 2.87,

combSWHMeters': 0.3, currentsDirectionDegrees': 45.0, currentsSpeedKnots': 0.05832,

hum%': 82.5, iceCover': 0.0, lat': 45, lon': 14, mslhPa': 1017.65, sea': true,

swellDirectionMeters': 90.74, swellPeriod': 3.07, swellSWHMeters': 0.27,

tempCelciousDegrees': 12.35, visKm': 24.135, wavesDirectionDegrees': 58.44,

wavesPeriod': 1.68, wavesSWHMeters': 0.11, windDirectionDegrees': 56.33,

windSpeedKnots': 14.71608}

==

Code snippet 15. Weather-service Kafka message sample (/weather-service)

As a companion application to this weather service, DANAOS has developed a user interface

(web page) that adds a visualization layer on top of the raw Weather Forecast Service API.

Figure 39 illustrates the user interfaces and gives an idea of the main supported features.

Figure 39. Weather Service Map user interface sample

At the left side menu, users can either manually introduce a pair of coordinates (i.e., latitude

and longitude) and a timestamp. They receive in turn the information we saw in Code snippet

15; the information is displayed on the left frame (under the inputs). Moreover, the application

also allows to introduce a CSV (Comma Separated Values) file with multiple timestamps and

coordinates, leading to a multi-query to NOAA’s API. The map displays the route followed by

the vessel, including some extra features as the wind direction or a circle that represents the

valid area of the forecast (the precision of the API is 0.5 degrees). On the right panel, the

application can show extra information, in form of time series curves. Some examples are:

• Average Speed through Water per Hour

• Average Fuel Oil Consumption per Hour

• Average Rounds per Minute of the M/E per Hour

• Average CO2 emissions per Hour

• Average SOX emissions per Hour

• Average NOX emissions per Hour

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

50

• Average Wind Speed (m/s) per Hour

Though there is no actual data coming from the PALAEMON platform represented here, the

application is ready and represents some metrics that we could extract from other different

sources (e.g., shipboard legacy systems); we have included them for illustrative purposes.

The reader can interpret this as a glimpse of the visualization material we could include as

part of a, for example, a virtual IBS.

5.9 Smart Risk Assessment Platform

This component is responsible for analyzing the context during an incident management,

increasing the awareness of Master and Bridge Command Team to lead to better and safer

decisions. In essence, the SRAP receives the information of almost all sources (it is basically

subscribed to all Kafka topics) and performs a dynamic risk analysis based on the aggregation

of all this data. As a matter of fact, SRAP relies on Bayesian Networks to make the underlying

calculations [40].

As for the different operative phases, SRAP divides the operation into three main

modes/models:

1. Risk Assessment: this mode of operation is activated at the time the Master switches

to the homologous evacuation status. As we can see in Code snippet 16, SRAP

outputs a handful of general checks (e.g., vessel status, structural integrity, etc.),

ending up in an overall recommendation to the Master of Sounding the General Alarm

(or not). As a matter of fact, this final “Situation Assessment” field is the one that is

displayed on PIMM’s Decision Support Center (Figure 19 in page 29).

==

Received message (srap:0:790)

{'messageId': '81887a02-dec3-46ff-93fc-805bc66c5e08', 'timestamp': '2022-11-

23T12:13:28.12496723', 'sender': 'SRAP', 'SRAP model': 'Situation Assessment',

'Effectiveness of mitigation measures': 'Not effective', 'Passengers proximity

to hazards': 'Medium', 'Status of Passive containment': 'Not effective',

'Spreading': 'Not contained', 'Structural Integrity': 'Compromised',

'Stability': 'Sufficient', 'Hull status': 'Safe', 'Ability to communicate':

'Fully operational', 'Critical system status': 'Fully operational', 'Vessel

Status': 'Safe', 'Pax vulnerability onboard': 'Moderate', 'Situation

Assessment': 'Sound GA'}

==
Code snippet 16. Smart Risk Assessment Platform Kafka message sample (/srap – Situation assessment)

2. Mustering assessment: once the evacuation has started and passenger have

received instruction to move to their respective closest/safest muster station, SRAP

proceeds to break down the ship into different areas or geo-fences and evaluate the

risk for each of them, as illustrated in Figure 20 (page 30). To simplify the complexity

and speed up the reaction from the Master or Bridge Command Team, the

“Low/Medium/High” possible values for each zone is displaying a simple and intuitive

color code.

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

51

==

Received message (srap:0:514)

{'messageId': '8fc2e9fc-c5f8-48ab-8ebd-2e42bc183adb', 'timestamp': '2022-11-

23T12:14:02.896301', 'sender': 'SRAP', 'SRAP model': 'Mustering Assessment',

'Individual status': {'2549': 'Assistance required', '2552': 'Assistance

required', '2553': 'Movement delayed', '2554': 'Assistance required', '2555':

'Movement delayed'}, 'Escape routes': {'Z1D9': 'Open', 'Z2D9': 'Disrupted',

'Z3D9': 'Open', 'Z4D9': 'Open', 'Z1D8': 'Closed', 'Z2D8': 'Closed', 'Z3D8':

'Opened', 'Z4D8': 'Disrupted', 'MSA': 'Opened', 'MSB': 'Closed', 'MSC':

'Opened', 'MSD': 'Opened'}, 'Group performance': {'Z1D9': 'Low', 'Z2D9':

'Medium', 'Z3D9': 'Low', 'Z4D9': 'High', 'Z1D8': Low, 'Z2D8': 'Medium', 'Z3D8':

'Low', 'Z4D8': 'High', 'MSA': 'Low', 'MSB': 'Low', 'MSC': 'High', 'MSD': Low},

'Risk of delay': {'Z1D9': 'Low', 'Z2D9': 'Medium', 'Z3D9': 'Low', 'Z4D9':

'High', 'Z1D8': Low, 'Z2D8': 'Medium', 'Z3D8': 'Low', 'Z4D8': 'High', 'MSA':

'High', 'MSB': Low, 'MSC': 'High','MSD': Low}}

==
Code snippet 17. Smart Risk Assessment Platform Kafka message sample (/srap – Mustering)

3. Pre-abandonment assessment:

In this last phase, SRAP basically determines the urgency level (low/medium/high) for a

potential abandonment, trying to support the Master to take this critical decision. Under the

hood, the model is conceived to take inputs as the vessel status, in terms of floatability, stability

structural integrity… how much safety teams may have contained the incident, etc.

Nonetheless, this information belongs to the internal process, yielding a final JSON object in

this phase like the one displayed in Code snippet 18.

==

Received message (srap:0:318)

{'messageId': 'dce8ecca-9901-4697-9402-21e2d7ba37ca', 'timestamp': '2022-11-

23T12:17:48.072397', 'sender': 'SRAP', 'SRAP model': 'Pre-Abandonment

Assessment', 'Status': 'Abandon', 'Urgency for abandonment': 'Medium'}

==
Code snippet 18. Smart Risk Assessment Platform Kafka message sample (/srap – Preabandonment)

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

52

6 Conclusions

In this report we have gathered the main results obtained after a thorough testing campaign,

carried out over the PALAEMON Communications Platform. The aim behind this verification

process is to assess that the performance, reliability and behaviour of the whole system fulfil

the expectations (and requirements) pledged in the Grant Agreement.

Alongside the stakeholders’ feedback and system requirements that were used to design the

system, we created, at the beginning of the project, a methodology for coping with software

development and system integration. Under a (to the extent possible) open-source philosophy,

we used a private instance of GitLab, one of the most popular VCS platforms to keep track of

the source code (and share it with the consortium or the community). Alongside this basic

functionality, we harnessed other features, like the issue and branch management to report

any bug or improvement found. Moreover, the CI/CD framework allowed an automatic and

seamless re-deployment of modified components just after uploading a new version of the

code, without any kind of human intervention.

Regarding the actual hardware running the different services, we have 2 different Virtual

Machines in the cloud (i.e., PALAEMON-01 and PALAEMON-02) that emulate the

infrastructure that shall be installed onboard Elyros and ashore, respectively. Software

component will be deployed on these instances using a hybrid approach, with Kubernetes

hosting the core services (Data Fusion Bus modules, PALAEMON Evacuation Coordinator,

Voyage Report Generator, etc.), whereas those dedicated to properly manage the evacuation

process are executed on Docker (Compose). Aside these, we cannot disregard the importance

of all the standalone devices and technologies that funnel information to the system. Smart

cameras, bracelets, drones, VDES transceivers, AR glasses, etc. bring a new level of

hardware that help increase the awareness and safety during an evacuation.

We have followed two different approaches to validate the operation of the PALAEMON

Communications platform, which, as the reader shall expect, hinges around the concept of

smart evacuation management, concept in which we have delved into, defining its own state

machine and communications protocol between the so-called PALAEMON Evacuation

Coordinator and the rest of the main software components.

First, we cover a cross-validation model that presents transversal outputs or evidence from

various either internal frameworks or even external tools, which do not have a direct

participation during an incident. On the former group, Apache Kafka – actual key element of

Data Fusion Bus, the PALAEMON Evacuation Coordinator and the Voyage Report Generator,

which basically gathers all the information generated around a voyage. Belonging to these

“extra tools”, we have presented Kibana as a data visualization framework over the main

database (Elasticsearch) and Grafana, another monitoring and observability tool to see the

current performance of Kafka’s communications.

Aside this holistic demonstration, we also report the individual communication proofs of the

main software components. For that, we have chiefly focused on the messages exchanged

using Kafka, but there are special cases where the presence of graphical user interfaces foster

and validate the correct interplay among components.

With these tests passed, the platform is ready to become an active part during a real

evacuation scenario, framed under WP8 (PALAEMON Field Trials, Evaluation and Outcomes)

activities.

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

53

7 References

[1] “F/B Elyros - ANEK Lines (Official web page).” https://www.anek.gr/en/vessel/fb-
elyros/.

[2] “PALAEMON Deliverable D7.4 - Software Development and Integration Methodology,”
2020.

[3] “PALAEMON Deliverable D2.6 - PALAEMON Architecture v1,” 2020.

[4] “Production-Grade Container Orchestration - Kubernetes.” https://kubernetes.io/
(accessed Apr. 20, 2020).

[5] “Docker. Accelerated, Containerized Application Development (homepage).”
https://www.docker.com/.

[6] “Apache Kafka.” https://kafka.apache.org/ (accessed Jun. 02, 2021).

[7] “GitLab.org / GitLab · GitLab.” https://gitlab.com/gitlab-org/gitlab.

[8] “Sonatype Nexus Repository Manager (homepage).”
https://www.sonatype.com/products/nexus-repository.

[9] “PALAEMON Deliverable D2.7 - PALAEMON Architecture v2,” 2021.

[10] “PALAEMON Deliverable D7.5 - System Integration & Final PALAEMON Prototype
(v2),” 2022.

[11] “Overview of Docker Compose | Docker Documentation.”
https://docs.docker.com/compose/.

[12] “Lens - The Kubernetes IDE (homepage).” https://k8slens.dev/.

[13] “Kapow! GitHub repository.” https://github.com/BBVA/kapow.

[14] “Apache NiFi.” https://nifi.apache.org/ (accessed Jun. 02, 2021).

[15] “Apache NiFi Registry (homepage).” https://nifi.apache.org/registry.html.

[16] “Apache Zookeeper (homepage).” https://zookeeper.apache.org/.

[17] “Keycloak - Open Source Identity and Access Management for Modern Applications
and Services.” https://www.keycloak.org/.

[18] “PALAEMON Deliverable D3.4 - Development of Ship Stability Toolkit v2,” 2021.

[19] “PALAEMON Deliverable D7.3 - Deployment of VDES (v2),” 2022.

[20] “PALAEMON Deliverable D3.10 - Development of Risk Assessment Platform v2,” 2021.

[21] “PALAEMON Deliverable D6.5 - PALAEMON Incident Management Module (PIMM),”
2022.

[22] “MinIO | High Performance, Kubernetes Native Object Storage.” https://min.io/
(accessed Jun. 02, 2021).

[23] “Traefik - The Cloud Native Application Proxy (homepage).” https://traefik.io/traefik/.

[24] P. Consortium, “PALAEMON D7.5 PALAEMON Uniform Data Exchange Modules -
Interoperability Layer,” 2020.

[25] “PALAEMON Deliverable D7.2 - Uniform Data Exchange Modules - Interoperability
Layer (v2),” 2022.

[26] “Elasticsearch: The Official Distributed Search & Analytics Engine | Elastic.”
https://www.elastic.co/elasticsearch/ (accessed Jun. 18, 2021).

[27] “Kibana: Explore, Visualize and Discover Data (homepage).”
https://www.elastic.co/kibana/.

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

54

[28] “Kibana Canvas: Create Live Infographic-Style Presentations,” [Online]. Available:
https://www.elastic.co/what-is/kibana-canvas.

[29] GDPR, “General Data Protection Regulation (GDPR) – Official Legal Text,” General
Data Protection Regulation, 2016. https://gdpr-info.eu/.

[30] European Commission, “General Data Protection Regulation - Recital 46: Vital Interests
of the Data Subject,” 2018. [Online]. Available: https://gdpr-info.eu/recitals/no-46/.

[31] F. C. C. (FCC), “Global Maritime Distress and Safety System (GMDSS) - Ship radio
stations,” [Online]. Available: https://www.fcc.gov/wireless/bureau-divisions/mobility-
division/maritime-mobile/ship-radio-stations/global-maritime.

[32] A. L. Panagiotis Panagiotidis, Kyriakos Giannakis, Nikolaos Angelopoulos, “A MARINE
ACCIDENTS DATASET,” 2021. doi: 10.5281/zenodo.5592999.

[33] “The International Safety Management (ISM) Code.”
https://www.imo.org/en/OurWork/HumanElement/Pages/ISMCode.aspx (accessed
Jun. 21, 2021).

[34] “PALAEMON Deliverable D6.3 - PALAEMON Interfaces and HMI toolkit,” 2022.

[35] “PALAEMON Deliverable D6.4 - Development of PALAEMON On-board Decision
Support System,” 2022.

[36] “Grafana - The open observability platform (homepage).” https://grafana.com/.

[37] “Elasticsearch Dump (GitHub repository).” https://github.com/elasticsearch-
dump/elasticsearch-dump.

[38] “Softblade - MQTT.fx (homepage).” https://softblade.de/en/mqtt-fx/.

[39] I. WAMIT, “WAMIT Simulator (homepage).” https://www.wamit.com/index.htm.

[40] A. G. Eleye-Datubo, A. Wall, A. Saajedi, and J. Wang, “Enabling a Powerful Marine and
Offshore Decision-Support Solution Through Bayesian Network Technique,” Risk Anal.,
vol. 26, no. 3, pp. 695–721, Jun. 2006, doi: 10.1111/j.1539-6924.2006.00775.x.

[41] “Kubernetes Pod definition and documentation.”
https://kubernetes.io/docs/concepts/workloads/pods/.

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

55

Annex I CI/CD Sample

Code snippet 19. Platform Deployment repository .gitlab-ci.yml file (CI/CD example)

image: docker:stable

variables:
 DOCKER_HOST: tcp://localhost:2375
 DOCKER_TLS_CERTDIR: ""
 VDR_IMAGE: voyage-report-generator
 KAPOW_IMAGE: kapow

services:
 - docker:stable-dind

before_script:
 - echo "========== Branch $CI_BUILD_REF_NAME ========="
 - echo $CI_BUILD_REF_NAME
stages:
 - build
 - build_master
 - image_clean
 - deploy

################# BUILD STEP #################
.build_template: &build_definition
 image:
 name: gcr.io/kaniko-project/executor:perf-debug
 entrypoint: [""]
 before_script:
 - mkdir -p /kaniko/.docker
 - echo "{\"auths\":{\"${NEXUS_CLI_HOST}\":{\"auth\":\"$(printf "%s:%s"
"${NEXUS_USER}" "${NEXUS_PASS}" | base64 | tr -d '\n')\"}}}" >
/kaniko/.docker/config.json
 script:
 - >-
 /kaniko/executor
 --cache=true
 --snapshotMode=redo
 --context="${CONTEXT}"
 --dockerfile="${CONTEXT}/Dockerfile"
 ${DOCKER_EXTRA_ARGS}
 --destination="${NEXUS_CLI_HOST}/${DOCKER_IMAGE}:${CI_COMMIT_SHA}"
 --destination="${NEXUS_CLI_HOST}/${DOCKER_IMAGE}:latest"

build_kapow_job:
 <<: *build_definition # Merge the contents of the 'deploy_definition'
alias
 stage: build
 variables:
 CONTEXT: "./kapow"
 DOCKER_IMAGE: ${KAPOW_IMAGE}
 only:
 changes:
 - kapow/**/*

build_vdr_job:
 <<: *build_definition # Merge the contents of the 'deploy_definition'
alias
 stage: build
 variables:
 CONTEXT: "./vdr"
 DOCKER_IMAGE: ${VDR_IMAGE}
 only:
 changes:

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

56

 - vdr/**/*

################# BUILD MASTER STEP #################
.build_master_template: &build_master_definition
 image:
 name: gcr.io/kaniko-project/executor:perf-debug
 entrypoint: [""]
 before_script:
 - mkdir -p /kaniko/.docker
 - echo "{\"auths\":{\"${NEXUS_CLI_HOST}\":{\"auth\":\"$(printf "%s:%s"
"${NEXUS_USER}" "${NEXUS_PASS}" | base64 | tr -d '\n')\"}}}" >
/kaniko/.docker/config.json
 script:
 - echo "FROM ${NEXUS_CLI_HOST}/${DOCKER_IMAGE}:${CI_COMMIT_SHA}" | /kaniko/executor
--context="${CONTEXT}" --dockerfile=/dev/stdin --
destination="${NEXUS_CLI_HOST}/${DOCKER_IMAGE}:stable"

build_master_kapow_job:
 <<: *build_master_definition # Merge the contents of the
'deploy_definition' alias
 stage: build_master
 variables:
 CONTEXT: "./kapow"
 DOCKER_IMAGE: "${KAPOW_IMAGE}"
 only:
 refs:
 - master
 changes:
 - kapow/**/*

build_master_vdr_job:
 <<: *build_master_definition # Merge the contents of the
'deploy_definition' alias
 stage: build_master
 variables:
 CONTEXT: "./vdr"
 DOCKER_IMAGE: "${VDR_IMAGE}"
 only:
 refs:
 - master
 changes:
 - vdr/**/*

################ CLEAN TEMPORARY IMAGES STEP #################

.clean_temporary_images_template: &clean_temporary_images_definition # Hidden key that
defines an anchor named 'deploy_clean_definition'
 image: debian:bullseye-slim
 variables:
 IMAGE: ""
 before_script:
 - apt-get update && apt install -y python3 python3-dev python3-pip gcc musl-dev
libffi-dev curl cargo
 - curl https://sh.rustup.rs -sSf | sh -s -- -y
 - source $HOME/.cargo/env
 - pip3 install nexus3-cli==3.0.0
 - nexus3 login --url $NEXUS_WEB_HOST --username $NEXUS_USER --password $NEXUS_PASS -
-x509_verify
 script:
 - echo "Cleaning $NEXUS_REPO $IMAGE"
 - nexus3 delete $NEXUS_REPO/v2/$IMAGE/manifests/$CI_COMMIT_SHA
 when: always

clean_vdr_image_job:
 <<: *clean_temporary_images_definition

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

57

 stage: image_clean
 variables:
 IMAGE: $VDR_IMAGE
 only:
 changes:
 - vdr/**/*

clean_kapow_image_job:
 <<: *clean_temporary_images_definition
 stage: image_clean
 variables:
 IMAGE: $KAPOW_IMAGE
 only:
 changes:
 - kapow/**/*

################# TRIGGER PIPELINE #################
trigger_pipeline_job:
 stage: deploy
 script:
 - apk update && apk add curl
 - "curl -X POST --fail -F token=$TRIGGER_TOKEN -F ref=master -F
variables[CI_COMMIT_SHA]=${CI_COMMIT_SHA}
https://scm.atosresearch.eu/api/v4/projects/758/trigger/pipeline"
 only:
 refs:
 - master
 changes:
 - kapow/**/*
 - vdr/**/*

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

58

Annex II Evacuation Coordinator message exchange with dependent

components

==
Received message (resource-discovery-request:0:119)
{'originator': 'Evacuation Coordinator', 'timestamp': '2022-11-23T11:32:37.640964Z',
'evacuation-status': 0}
==
==
Received message (resource-discovery-response:0:553)
{'component_id': 'SSS', 'operation_mode': 0, 'timestamp': '2022-11-
23T11:32:37.914780+00:00'}
==
==
Received message (resource-discovery-response:0:554)
{'component_id': 'SST', 'operation_mode': 0, 'timestamp': '2022-11-
23T11:32:34.824838+00:00'}
==
==
Received message (resource-discovery-response:0:555)
{'timestamp': '2022-11-23 11:32:17.359', 'component_id': 'PaMEAS-Location',
'operation_mode': 1}
==
==
Received message (resource-discovery-response:0:556)
{'component_id': 'VDES App', 'operation_mode': 1, 'timestamp': '2022-11-
23T11:32:37.954067301Z'}
==
==
Received message (resource-discovery-response:0:557)
{'component_id': 'PIMM+DSS+WFT', 'operation_mode': 1, 'timestamp': '2022-11-
23T11:32:38.123562'}
==
==
Received message (resource-discovery-response:0:558)
{'component_id': 'camera-02', 'operation_mode': 3, 'timestamp': '2022-11-
23T12:32:37.962965'}
==
==
Received message (resource-discovery-response:0:559)
{'component_id': 'camera-01', 'operation_mode': 3, 'timestamp': '2022-11-
23T12:32:37.967202'}
==
==
Received message (resource-discovery-response:0:560)
{'component_id': 'camera-04', 'operation_mode': 3, 'timestamp': '2022-11-
23T12:32:37.967381'}
==
==
Received message (resource-discovery-response:0:561)
{'component_id': 'camera-03', 'operation_mode': 3, 'timestamp': '2022-11-
23T12:32:37.967423'}
==
==
Received message (resource-discovery-response:0:562)
{'timestamp': '2022-11-23T11:32:40.515490', 'component_id': 'VDR', 'operation_mode': 0}
==

Code snippet 20. Evacuation Coordinator - /resource-discovery-request and /resource-discovery-response
(sample)

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

59

==
Received message (heartbeat-request:0:85248)
{'originator': 'Evacuation Coordinator', 'timestamp': '2022-11-23T11:15:56.310966Z',
'evacuation-status': 3}
==
==
Received message (heartbeat-response:0:378077)
{'timestamp': '2022-11-23T11:15:56.565955', 'component_id': 'VDR', 'operation_mode': 1}
==
==
Received message (heartbeat-response:0:378078)
{'component_id': 'VDES App', 'operation_mode': 1, 'timestamp': '2022-11-
23T11:15:56.582800976Z'}
==
==
Received message (heartbeat-response:0:378079)
{'component_id': 'SST', 'operation_mode': 3, 'timestamp': '2022-11-
23T11:15:53.481089+00:00'}
==
==
Received message (heartbeat-response:0:378080)
{'timestamp': '2022-11-23 11:15:35.984', 'component_id': 'PaMEAS-Location',
'operation_mode': 1}
==
==
Received message (heartbeat-response:0:378081)
{'component_id': 'PIMM+DSS+WFT', 'operation_mode': 1, 'timestamp': '2022-11-
23T11:15:56.758547'}
==
==
Received message (heartbeat-response:0:378082)
{'component_id': 'camera-03', 'operation_mode': 3, 'timestamp': '2022-11-
23T12:15:56.593514'}
==
==
Received message (heartbeat-response:0:378083)
{'component_id': 'camera-01', 'operation_mode': 3, 'timestamp': '2022-11-
23T12:15:56.593794'}
==
==
Received message (heartbeat-response:0:378084)
{'component_id': 'camera-02', 'operation_mode': 3, 'timestamp': '2022-11-
23T12:15:56.602854'}
==
==
Received message (heartbeat-response:0:378085)
{'component_id': 'camera-04', 'operation_mode': 3, 'timestamp': '2022-11-
23T12:15:56.609201'}
==

Code snippet 21. Evacuation Coordinator - /heartbeat-request and /heartbeat-response (sample)

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

60

Evacuation Component Status
==
Received message (evacuation-coordinator:0:3750)
{'originator': 'Evacuation Coordinator', 'timestamp': '2022-11-23T11:13:37.851704Z',
'evacuation-status': 3}
==
==
Received message (evacuation-component-status:0:10927)
{'timestamp': '2022-11-23T11:13:38.102700', 'component_id': 'VDR', 'operation_mode': 1,
'operation_info': 'description'}
==
==
Received message (evacuation-component-status:0:10928)
{'component_id': 'VDES App', 'operation_mode': 1, 'timestamp': '2022-11-
23T11:13:38.114200341Z'}
==
==
Received message (evacuation-component-status:0:10929)
{'component_id': 'SST', 'operation_mode': 3, 'timestamp': '2022-11-
23T11:13:35.024860+00:00'}
==
==
Received message (evacuation-component-status:0:10930)
{'component_id': 'camera-04', 'operation_mode': 3, 'timestamp': '2022-11-
23T12:13:38.125351'}
==
==
Received message (evacuation-component-status:0:10931)
{'component_id': 'camera-03', 'operation_mode': 3, 'timestamp': '2022-11-
23T12:13:38.134947'}
==
==
Received message (evacuation-component-status:0:10932)
{'component_id': 'camera-02', 'operation_mode': 3, 'timestamp': '2022-11-
23T12:13:38.124869'}
==
==
Received message (evacuation-component-status:0:10933)
{'component_id': 'camera-01', 'operation_mode': 3, 'timestamp': '2022-11-
23T12:13:38.156348'}
==

Code snippet 22. Evacuation Coordinator - /evacuation-coordinator and /evacuation-component-status (sample)

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

61

Annex III List of Kafka Topics

Table 1. Kafka Topics compilation table

Topic Producer Target consumer(s) Elasticsearch Description

/evacuation-

coordinator

Evacuation

Coordinator

ALL evacuation-

coordinator

Ship evacuation status (0 – Normal status… 5- MEV launching)

/evacuation-

component-status

ALL Evacuation

coordinator

evacuation-

component-status

Components reply to evacuation status change – may modify

their internal operation mode

/resource-

discovery-request

Evacuation

Coordinator

ALL resource-

discovery-request

At voyage start, the System wants to know all available and

connected devices

/resource-

discovery-response

ALL Evacuation

coordinator

resource-

discovery-response

Initialization message request (to know all active devices)

/heartbeat-request Evacuation

Coordinator

ALL heartbeat-request Periodic check of components health (e.g., every minute). Sent

by the coordinator

/heartbeat-

response

ALL Evacuation

coordinator

heartbeat-

response

Periodic check of components health (e.g., every minute). Reply

generated by the components

/smart-safety-

system

SSS DFB smart-safety-

system

Transcription of Drag'n Drop events created on the SSS

dashboard

/smart-camera ADV DFB smart-camera Message sent when the cameras detect a variation in the

number of people detected

/smart-camera-

alarm

ADV DFB smart-camera-

alarm

People trapped, blocked corridor, stampede detected, etc.

/shm-report ESI DFB shm-report Ship health monitoring stability report (sent every 20 seconds in

the default configuration).

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

62

/shm-notification ESI DFB shm-alarm Alarm triggered when the sensors data have passed a threshold

(e.g., listing situation detected).

/smart-bracelet-

event-notification

ADV DFB smart-bracelet-

event-notification

Asynchronous event generated by the bracelets when e.g., a

passenger falls down or pushes the alarm button

/smart-bracelet-

sensor-data

ADV DFB smart-bracelet-

sensor-data

Biomedical information of the bracelet wearer: heartbeat,

oxygen (O2) saturation, body temperature, accelerometer

information (pitch, roll, angle)

/smart-bracelet-

pameas-evac-msg

UAEG DFB smart-bracelet-

pameas-evac-msg

Asynchronous msg from event generated by PaMEAS to be

displayed on the smart bracelets’ screens

/decision-support-

system

KT DFB decision-support-

system

List of actions taken from SOLAS and ISM manuals, according to

the evacuation status and the stakeholder (Master, crew, etc.)

/mayday-message ATOS, THALES DFB mayday-message Distress signal to be transmitted via VDES wireless radio link

/srap NTUA DSS srap Output of the Smart Risk Assessment Platform

/pameas-location UAEG SRAP pameas-location Anonymized location data of a passenger

/pameas-

notification

UEAG SRAP pameas-

notification

Instructions exchanged between PaMEAS and other

components (PIMM, crew, etc.)

/pameas-person UAEG DFB pameas-person Record of person (passenger/crew member)

registered to the system

/weather-service WISER Weather API weather-api Weather forecast generated every 3 hours. Data captured and

aggregated from an external service

/ais-position ATOS Dummy position

notification (AIS-

like)

ais-position Overheard information from the ship’s Automatic Identification

System (AIS)

http://srap-yyyy.mm/
http://srap-yyyy.mm/
http://srap-yyyy.mm/
http://srap-yyyy.mm/
http://weather-api-yyyy.mm/
http://ais-position-yyyy.mm/

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

63

/stability-toolkit SST DFB stability-toolkit Ship motion predictions

/sms-report ATOS DANAOS N/A When the Voyager Data Report is ready, the component sends

a message to SMS sharing the endpoint (location) of the report

on DFB’s cloud repository (i.e., MinIO)

/voyage-report-

generator-request

ATOS ATOS voyage-report-

generator-request

Activate/deactivate report. Notification from Evacuation

Coordinator to VDR

/voyage-report-

generator-response

ATOS ATOS voyage-report-

generator-

response

Acknowledgment

/legacy UAEG KT legacy Emulation of Shipboard Legacy Systems

/smoke-detector UAEG KT smoke-detector Emulation of Smoke Detector Alarms

http://stability-toolkit-yyyy.mm/

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

64

Annex IV PIMM API Assessment

This annex contains, as example, some of the services supported by the PIMM. They return

data generated and collected in the PALAEMON System, either from Kafka or Elasticsearch.

In order not to expose sensitive information (e.g., endpoints, passwords, tokens, etc.), these

values will be substituted and will be displayed embraced between double curly brackets (i.e.,

{{value}}).

Table 2. PIMM Get Token Request

HTTP message type POST

Header Content-Type application/json

Body (only for POST

messages)

{

 "username": {{pimmuser}},

 "password": {{pimm-possword}}

}

Request (URL) {{pimm-host}}/token

Response {

 "refresh": {{refresh-token}}

 "access": {{token}}

}

Table 3. PIMM Get Evacuation status

HTTP message type GET

Header Authorization Bearer {{token}}

Request (URL) {{pimm-host}}/evac_coordinator

Response {

 "level": 5

}

Table 4. PIMM Get Voyage Status

HTTP message type GET

Header Authorization Bearer {{token}}

Request (URL) {{pimm-host}}/voyage_status

Response {

 "voyage_status": 0

}

Table 5. PIMM Get Fire Sensor data

HTTP message type GET

Header Authorization Bearer {{token}}

Request (URL) {{pimm-host}}/fire-sensor

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

65

Response [
 {
 "id": 1,
 "label": "Fire Detector 1 on Garage",
 "slug": "Fire Detector 1 on Garage",
 "location": "Garage",
 "triggered": false
 },
 {
 "id": 2,
 "label": "Fire Detector 2 on Garage",
 "slug": "Fire Detector 2 on Garage",
 "location": "Garage",
 "triggered": false
 },
 {
 "id": 3,
 "label": "Fire Detector 3 on Garage",
 "slug": "Fire Detector 3 on Garage",
 "location": "Garage",
 "triggered": false
 },
 {
 "id": 4,
 "label": "Smoke Detector 1 on Muster Station D",
 "slug": "Smoke Detector 1 on Muster Station D",
 "location": "Station D",
 "triggered": false
 },
 {
 "id": 5,
 "label": "Smoke Detector 2 on Muster Station D",
 "slug": "Smoke Detector 2 on Muster Station D",
 "location": "Station D",
 "triggered": false
 }
]

Table 6. PIMM Get Weather Forecast Toolkit

HTTP message type GET

Header Authoriz

ation

Bearer {{token}}

Request (URL) {{pimm-host}}/wft

Response [
 {
 "id": 1,
 "significant_wave_height": "1.00",
 "wind_direction": "169.00",
 "wind_speed": "4.00",
 "air_temp": "5.00",
 "timestamp": "2022-12-07T15:54:02.487259Z",
 "action_plan_follow": "{\"actions\": [\"The crew's actio
ns to extinguish of the fire were effective\"], \"Similarity\":
\"100%\", \"Similar_Case\": \"Gunde Maersk\"}",
 "action_plan_not_follow": "{\"actions\": [\"The fire was
 spreading quickly\"], \"Similarity\": \"99%\", \"Similar_Case\"
: \"Aframax River\"}",
 "wind_charts": "{\"chart\": {\"type\": \"bar\"}, \"title
\": {\"text\": \"Distribution of deaths and injuries regarding t
he wind speed conditions\"}, \"xAxis\": {\"categories\": \"(0,34

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

66

] Knots\", \"title\": {\"text\": \"null\"}}, \"yAxis\": {\"min\"
: 0, \"title\": {\"text\": \"Frequency\", \"align\": \"high\"},
\"labels\": {\"overflow\": \"justify\"}}, \"tooltip\": {\"valueS
uffix\": \"\"}, \"plotOptions\": {\"bar\": {\"dataLabels\": {\"e
nabled\": \"true\"}}}, \"legend\": {\"layout\": \"vertical\", \"
align\": \"right\", \"verticalAlign\": \"top\", \"x\": -
40, \"y\": 80, \"floating\": \"true\", \"borderWidth\": 1, \"bac
kgroundColor\": {\"Highcharts.defaultOptions.legend.backgroundCo
lor\": \"#FFFFFF\", \"shadow\": \"true\"}}, \"credits\": {\"enab
led\": \"false\"}, \"series\": [{\"name\": \"Deaths\", \"data\":
 93}, {\"name\": \"Injuries\", \"data\": 572}]}",
 "visibility_charts": "{\"chart\": {\"type\": \"bar\"}, \
"title\": {\"text\": \"Distribution of deaths and injuries regar
ding the visibility conditions\"}, \"xAxis\": {\"categories\": \
">5 Miles\", \"title\": {\"text\": \"null\"}}, \"yAxis\": {\"min
\": 0, \"title\": {\"text\": \"Frequency\", \"align\": \"high\"}
, \"labels\": {\"overflow\": \"justify\"}}, \"tooltip\": {\"valu
eSuffix\": \"\"}, \"plotOptions\": {\"bar\": {\"dataLabels\": {\
"enabled\": \"true\"}}}, \"legend\": {\"layout\": \"vertical\",
\"align\": \"right\", \"verticalAlign\": \"top\", \"x\": -
40, \"y\": 80, \"floating\": \"true\", \"borderWidth\": 1, \"bac
kgroundColor\": {\"Highcharts.defaultOptions.legend.backgroundCo
lor\": \"#FFFFFF\", \"shadow\": \"true\"}}, \"credits\": {\"enab
led\": \"false\"}, \"series\": [{\"name\": \"Deaths\", \"data\":
 43}, {\"name\": \"Injuries\", \"data\": 175}]}"
 }
]

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

67

Annex V VDR PDF Report Sample (draft)

It is worth highlighting that the implementation of this component is a Proof-of-

Concepts and only poses the possibilities that we could explore in further iterations

(after PALAEMON’s lifetime).

In this annex we have included some of the main representations covered in the PDF version

of the Voyage Report. This document complements the raw data and multimedia files (i.e.,

.json and .avi) and graphically displays all the “illustrative” information.

Figure 40. Voyage Report Example - Ship & Voyage Particulars

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

68

Figure 41. Voyage Report Example - Passenger list

Figure 42. Voyage Report Example - Ship Evacuation Status Timeline

Figure 43. Voyage Report Example - Ship position & trajectory

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

69

Figure 44. Voyage Report Example - Smart Cameras alarms timeline

Figure 45. Voyage Report Example - Smart Bracelets alarms (i.e., fall detection) timeline

Figure 46. Voyage Report Example - Ship Health Monitoring alarms timeline

MG-2-2-2018 PALAEMON - 814962

PALAEMON / D7.6 Test cases and overall system testing results (v2)

70

Annex VI Smart Bracelets Evacuation Support Messages

a) Biometrics data b) General Alarm

c) Go to Muster Station A d) Go Downstairs

e) Go straight ahead f) Turn left

g) Stay there (at muster station) h) Embark to lifeboat (MEV)

Figure 47. Smart Bracelets Evacuation Support Messages

